These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intraneuronal [Ca2+] changes induced by 2-deoxy-D-glucose in rat hippocampal slices.
    Author: Tekkök S, Medina I, Krnjević K.
    Journal: J Neurophysiol; 1999 Jan; 81(1):174-83. PubMed ID: 9914278.
    Abstract:
    Temporary replacement of glucose by 2-deoxyglucose (2-DG; but not sucrose) is followed by long-term potentiation of CA1 synaptic transmission (2-DG LTP), which is Ca2+-dependent and is prevented by dantrolene or N-methyl--aspartate (NMDA) antagonists. To clarify the mechanism of action of 2-DG, we monitored [Ca2+]i while replacing glucose with 2-DG or sucrose. In slices (from Wistar rats) kept submerged at 30 degreesC, pyramidal neurons were loaded with [Ca2+]-sensitive fluo-3 or Fura Red. The fluorescence was measured with a confocal microscope. Bath applications of 10 mM 2-DG (replacing glucose for 15 +/- 0.38 min, means +/- SE) led to a rapid but reversible rise in fluo-3 fluorescence (or drop of Fura Red fluorescence); the peak increase of fluo-3 fluorescence (DeltaF/F0), measured near the end of 2-DG applications, was by 245 +/- 50% (n = 32). Isosmolar sucrose (for 15-40 min) had a smaller but significant effect (DeltaF/F0 = 94 +/- 14%, n = 10). The 2-DG-induced DeltaF/F0 was greatly reduced (to 35 +/- 15%, n = 16) by,-aminophosphono-valerate (50-100 microM) and abolished by 10 microM dantrolene (-4.0 +/- 2.9%, n = 11). A substantial, although smaller effect, of 2-DG persisted in Ca2+-free 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N', N'-tetraacetic acid (EGTA) medium. Two adenosine antagonists, which do not prevent 2-DG LTP, were also tested; 2-DG-induced DeltaF/F0 (fluo-3) was not affected by the A1 antagonist 8-cyclopentyl-3, 7-dihydro-1,3-dipropyl-1H-purine-2,6-dione (DPCPX 50 nM; 287 +/- 38%; n = 20), but it was abolished by the A1/A2 antagonist 8-SPT; 25 +/- 29%, n = 19). These observations suggest that 2-DG releases glutamate and adenosine and that the rise in [Ca2+] may be triggered by a synergistic action of glutamate (acting via NMDA receptors) and adenosine (acting via A2b receptors) resulting in Ca2+ release from a dantrolene-sensitive store. The discrepant effects of sucrose and 8-SPT on DeltaF/F0, on the one hand, and 2-DG LTP, on the other, support other evidence that increases in postsynaptic [Ca2+]i are not essential for 2-DG LTP.
    [Abstract] [Full Text] [Related] [New Search]