These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in cholinergic responses of sweat glands during denervation and reinnervation.
    Author: Vilches JJ, Rodríguez FJ, Verdú E, Valero A, Navarro X.
    Journal: J Auton Nerv Syst; 1998 Dec 11; 74(2-3):134-42. PubMed ID: 9915629.
    Abstract:
    Functional sudomotor responses have been studied in sweat glands reinnervated after sciatic nerve crush and partially denervated by cisplatin intoxication in the mouse. The sudomotor function mediated by the sciatic nerve was evaluated by silicone imprints on the plantar surface of the hindpaws. Five days after nerve crush, completely denervated sweat glands became unresponsive to cholinergic stimulation with pilocarpine. During the following weeks, the number of reinnervated, reactive sweat glands increased progressively to reach a maximum of 89% of preoperative control counts by 40 days after nerve crush. At this time, the mean volume of sweat secreted per gland was normal, but reinnervated glands showed a secretory activity abnormally sustained over time after pilocarpine stimulation and, on the other hand, had an increased resistance to the inhibition of secretion induced by atropine. The effects of cisplatin administration on sudomotor function were investigated in two groups of mice, one treated with high doses of cisplatin (10 mg/kg/week for 4 weeks) and another treated with low doses of cisplatin (5 mg/kg/week for 8 weeks). Cisplatin intoxication produced abnormal sudomotor responses indicative of denervation from cumulative doses of 10 mg/kg. The first abnormality found was a partial resistance of sweat glands to atropine, followed by a decrease in the sweat output per gland and finally a decline in the number of sweat glands activated by pilocarpine. These abnormalities in the sudomotor responses were more pronounced in mice treated with a high dose than in those with a lower dose regime.
    [Abstract] [Full Text] [Related] [New Search]