These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of an amphipathic drug on the rheological properties of the cell membrane.
    Author: Bazzoni G, Rasia M.
    Journal: Blood Cells Mol Dis; 1998 Dec; 24(4):552-9. PubMed ID: 9917421.
    Abstract:
    Sodium thiopental, as other amphiphilic molecules, interacts with the membrane by inserting into the lipid bilayer and causing alterations of the membrane properties such as curvature and hypotonic lysis resistance. But can it modify the mechanical properties of the membrane? In the present work it was observed that sodium thiopental affected the membrane rheological properties by improving erythrocyte deformability; this effect resulted from a reduction of both the elastic modulus and surface viscosity. In erythrocytes devoid of sialic acid after treatment with neuraminidase, sodium thiopental membrane concentration was significantly higher than in normal cells, suggesting that drug access to the lipid bilayer be facilitated by the absence of the steric and electrostatic barrier of the glycocalyx negative charges. From a rheological point of view, desialated and normal cells showed the same response to the anesthetic as regards elastic modulus but in opposite direction if surface viscosity was considered. This finding supports the hypothesis that sodium thiopental molecules enter the bilayer of desialated cells in a higher proportion, as compared to the normal erythrocyte, promoting a disorganization that results in a greater inner friction. The changes in the rheological parameters, triggered by sodium thiopental, could be attributed to the bilayer contribution to the membrane mechanical properties, either directly or through interaction between the bilayer and the cytoskeleton.
    [Abstract] [Full Text] [Related] [New Search]