These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Importance of glutamate dehydrogenase stimulation for glucose and glutamine synthesis in rabbit renal tubules incubated with various amino acids.
    Author: Winiarska K, Bozko P, Lietz T, Bryła J.
    Journal: Acta Biochim Pol; 1998; 45(3):825-31. PubMed ID: 9918511.
    Abstract:
    The effect of 2-aminobicyclo[2.2.1]heptan-2-carboxylic acid (BCH), an L-leucine nonmetabolizable analogue and an allosteric activator of glutamate dehydrogenase, on glucose and glutamine synthesis was studied in rabbit renal tubules incubated with alanine, aspartate or proline in the presence of glycerol and octanoate, i.e. under conditions of efficient glucose formation. With alanine+glycerol+octanoate the addition of BCH resulted in a stimulation of alanine and glycerol consumption, accompanied by an increased glucose, lactate and glutamine synthesis. In contrast, when alanine was substituted by either aspartate or proline, BCH altered neither glucose formation nor glutamine and glutamate synthesis, while an accelerated glycerol utilization was accompanied by a small increase in lactate production. In view of the BCH-induced changes in intracellular metabolite levels the acceleration of gluconeogenesis by BCH in the presence of alanine+glycerol+octanoate is probably due to (i) increased uptake of alanine via alanine aminotransferase, (ii) stimulation of phosphoenolpyruvate carboxykinase, a key-enzyme of gluconeogenesis, (iii) rise of glucose-6-phosphatase activity, as well as (iv) activation of the malate-aspartate shuttle resulting in an augmented glycerol utilization for lactate and glucose synthesis.
    [Abstract] [Full Text] [Related] [New Search]