These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: l-methamphetamine pharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived l-methamphetamine.
    Author: Melega WP, Cho AK, Schmitz D, Kuczenski R, Segal DS.
    Journal: J Pharmacol Exp Ther; 1999 Feb; 288(2):752-8. PubMed ID: 9918585.
    Abstract:
    This study evaluated whether the caudate-putamen dopamine response that has been observed after deprenyl administration could be attributed exclusively to metabolically generated l-methamphetamine (l-MeAmp). Brain and plasma levels of deprenyl and l-MeAmp were measured after deprenyl (10 mg/kg s.c.) from 10 to 60 min in conscious rats. Peak caudate-putamen levels were observed for deprenyl (15 nmol/g) at 10 min and for l-MeAmp (3 nmol/g) at 30 min. In a parallel study, l-MeAmp metabolism was evaluated. After l-MeAmp (20 mg/kg s.c.), metabolite levels remained low relative to those of the parent compound: l-amphetamine, approximately 5 to 12%; and para-hydroxy-l-methamphetamine (OH-MeAmp), approximately 0.25%. Accordingly, l-MeAmp was considered to be the primary pharmacologically active deprenyl metabolite. A pharmacokinetic-pharmacodynamic analysis was then used to relate these pharmacokinetic data to the results of previous microdialysis studies in which increases in extracellular dopamine were measured in the caudate-putamen after l-MeAmp (3-18 mg/kg) and after deprenyl (10 mg/kg). Dopamine response-area under curve versus dose plots were generated and used to show that an administered dose of 4 mg/kg l-MeAmp would be necessary to effect a dopamine response-area under curve comparable to that observed after the deprenyl dose. However, the present pharmacokinetic results indicated that l-MeAmp brain levels after deprenyl corresponded to those that would be obtained from 0.4 mg/kg l-MeAmp (i.e., one tenth of the required dose). Collectively, these results suggest that the acute increases in extracellular dopamine observed after deprenyl are not due uniquely to metabolically generated l-MeAmp but also to other actions of deprenyl at the dopamine terminal.
    [Abstract] [Full Text] [Related] [New Search]