These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals.
    Author: Chen H, Slepnev VI, Di Fiore PP, De Camilli P.
    Journal: J Biol Chem; 1999 Feb 05; 274(6):3257-60. PubMed ID: 9920862.
    Abstract:
    Clathrin-mediated endocytosis was shown to be arrested in mitosis due to a block in the invagination of clathrin-coated pits. A Xenopus mitotic phosphoprotein, MP90, is very similar to an abundant mammalian nerve terminal protein, epsin, which binds the Eps15 homology (EH) domain of Eps15 and the alpha-adaptin subunit of the clathrin adaptor AP-2. We show here that both rat epsin and Eps15 are mitotic phosphoproteins and that their mitotic phosphorylation inhibits binding to the appendage domain of alpha-adaptin. Both epsin and Eps15, like other cytosolic components of the synaptic vesicle endocytic machinery, undergo constitutive phosphorylation and depolarization-dependent dephosphorylation in nerve terminals. Furthermore, their binding to AP-2 in brain extracts is enhanced by dephosphorylation. Epsin together with Eps15 was proposed to assist the clathrin coat in its dynamic rearrangements during the invagination/fission reactions. Their mitotic phosphorylation may be one of the mechanisms by which the invagination of clathrin-coated pits is blocked in mitosis and their stimulation-dependent dephosphorylation at synapses may contribute to the compensatory burst of endocytosis after a secretory stimulus.
    [Abstract] [Full Text] [Related] [New Search]