These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of wzx (rfbX) mutations on A-band and B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa O5. Author: Burrows LL, Lam JS. Journal: J Bacteriol; 1999 Feb; 181(3):973-80. PubMed ID: 9922263. Abstract: The wbp cluster of Pseudomonas aeruginosa O5 encodes a number of proteins involved in biosynthesis of the heteropolymeric and Wzy-dependent B-band O antigen, including Wzy, the O-antigen polymerase, and Wzz, the regulator of O-antigen chain length. A gene (formerly wbpF), contiguous with wzy in the wbp cluster, is predicted to encode a highly hydrophobic protein with multiple membrane-spanning domains. This secondary structure is consistent with that of Wzx (RfbX), the putative O-antigen unit translocase or "flippase." Insertion of a Gmr cassette at two separate sites within the putative wzx gene led in both cases to the loss of B-band lipopolysaccharide (LPS) O-antigen production. To our knowledge, this is the first report of the successful generation of chromosomal wzx gene replacement mutations. Surprisingly, inactivation of wzx also led to a marked delay in production of the ATP-binding cassette-transporter-dependent, D-rhamnose homopolymer, A-band LPS. This effect on A-band LPS synthesis was alleviated by supplying multiple copies of WbpL in trans. WbpL, a WecA (Rfe) homologue, was shown recently to be essential for the initiation of both A-band and B-band LPS synthesis in P. aeruginosa O5 (H. L. Rocchetta, L. L. Burrows, J. C. Pacan, and J. S. Lam, Mol. Microbiol. 28:1103-1119, 1998). These results suggest that the delay in A-band LPS production may arise from insufficient access to WbpL when the completed B-band O unit is not successfully translocated to the periplasm. Without adequate WbpL, A-band LPS synthesis is delayed. A subset of wzx mutants appeared to have accumulated second-site mutations which either restored the normal expression of A-band LPS or abolished A-band expression completely. Complementation studies showed that all of the additional mutations affecting LPS synthesis that were characterized in this study were located within the B-band LPS genes.[Abstract] [Full Text] [Related] [New Search]