These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Folding and assembly of an antibody Fv fragment, a heterodimer stabilized by antigen.
    Author: Jäger M, Plückthun A.
    Journal: J Mol Biol; 1999 Feb 05; 285(5):2005-19. PubMed ID: 9925781.
    Abstract:
    The folding and assembly of the Fv fragment of the phosphorylcholine binding antibody McPC603, a non-covalent heterodimer of the variable domains VH and VL, was investigated. Since both domains, each engineered for stability and folding efficiency, could now be obtained in native and soluble form by themselves, fluorescence spectra of VH and VL in unfolded, folded and associated states can be reported. VH and VL only associate when they are native, and the stability of the heterodimer is strongly increased in the presence of antigen. VH rapidly folds into an hyperfluorescent intermediate, and the native state is reached in two parallel, proline-independent reactions. VL displays two fast refolding reactions, which are followed by two slower phases, limited by proline cis/trans-isomerization. The rate-limiting step for both the Fv and the scFv (single-chain Fv) fragment is the formation of the native VH-VL interface, which depends on ProL95 being in cis. The folding of the Fv fragment is fast after short-term denaturation or in the presence of proline cis/trans-isomerase catalysis, but the scFv fragment falls into a kinetic trap, observed by the persistence of the slow phases under all conditions. Furthermore, the scFv fragment, but not the Fv fragment, gives rise to premature interface formation, indicated by the fluorescence spectra and a much higher transient binding of 8-anilino-1-naphthalene sulfonate. The analysis of the folding pathway of the domains VH and VL in isolation and in non-covalent and covalent assemblies should provide helpful insights into the folding of multimeric proteins in general, and for the further engineering of stable and well-folding antibody fragments in particular.
    [Abstract] [Full Text] [Related] [New Search]