These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photodynamic therapy sensitivity is not altered in human tumor cells after abrogation of p53 function.
    Author: Fisher AM, Ferrario A, Rucker N, Zhang S, Gomer CJ.
    Journal: Cancer Res; 1999 Jan 15; 59(2):331-5. PubMed ID: 9927042.
    Abstract:
    Photodynamic therapy (PDT) is an effective local cancer treatment that induces cytotoxicity through the intracellular generation of reactive oxygen species. The current study investigated whether abrogation of wild-type p53 expression modified the sensitivity of tumor cells to PDT-mediated oxidative stress. In these experiments, human colon (LS513) and breast (MCF-7) carcinoma cells exhibiting a wild-type p53 phenotype were directly compared to LS513 and MCF-7 cells with abrogated p53 function induced by stable integration of the human papillomavirus type 16 E6 viral oncoprotein. The effectiveness of this viral oncoprotein to target p53 for degradation was confirmed using a p53 transactivation reporter gene assay. Western analysis also confirmed attenuated expression of p53 in E6-transfected cells. Photosensitivity of PDT-treated cells was measured by a clonogenic assay and found to be equivalent for parental and p53-abrogated cells. PDT-mediated oxidative stress resulted in a rapid shift of pRb from a hyperphosphorylated form to a predominantly underphosphorylated form in parental cells that was not preceded by increases in p53 or p21 expression. Hypophosphorylated pRb was also observed in PDT-treated LS513/E6 and MCF-7/E6 cells, further indicating that p53 was not involved in this process. Delayed expression of p53 and p21 proteins was seen in parental cells 24-48 h after photosensitization. Cell cycle analysis showed that the abrogation of p53 had minimal effects on an observed PDT-induced G1 block. Rapid induction of apoptosis was documented in PDT-treated LS513 cells, whereas LS513/E6 treated cells exhibited reduced apoptosis in response to PDT. The MCF-7 cell lines exhibited a minimal apoptotic response to PDT. These results indicate that p53 expression does not directly modulate tumor cell sensitivity to PDT in either apoptosis-responsive (LS513) or nonresponsive (MCF-7) cells.
    [Abstract] [Full Text] [Related] [New Search]