These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics of a highly labile human type 5 17beta-hydroxysteroid dehydrogenase.
    Author: Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V.
    Journal: Endocrinology; 1999 Feb; 140(2):568-74. PubMed ID: 9927279.
    Abstract:
    17Beta-hydroxysteroid dehydrogenases (17betaHSDs) play an essential role in the formation of active intracellular sex steroids. Six types of 17betaHSD have been described to date, which only share approximately 20% homology. Human type 5 17betaHSD complementary DNA is unique among the 17betaHSDs because it belongs to the aldo-keto reductase family, whereas the others are members of the short chain alcohol dehydrogenases. The characteristics of human type 5 17betaHSD were investigated in human embryonic (293) cells stably transfected with human and mouse type 5 17betaHSD, as well as human type 3 3alphaHSD. Using intact transfected cells, type 5 17betaHSD shows a substrate specificity pattern comparable to those of human type 3 17betaHSD and mouse type 5 17betaHSD. These enzymes catalyze more efficiently the transformation of androstenedione (4-dione) to testosterone, whereas the transformation of dihydrotestosterone to 5alpha-androstane-3alpha,17beta-diol is much lower. In contrast, type 3 3alphaHSD catalyzes more efficiently the transformation of dihydrotestosterone to 5alpha-androstane-3alpha,17beta-diol, whereas the transformation of 4-dione to testosterone represents only 7% of the 3alphaHSD activity. However, upon homogenization, human type 5 17betaHSD activity decreases to approximately 10% of the activity in intact cells and remains stable at this level together with the 3alphaHSD activity. Under the same conditions, however, the mouse enzyme is not altered by homogenization. Indeed, using purified human 17betaHSD overexpressed in Escherichia coli, we could confirm that a much greater amount of protein is required to produce activity similar to the enzymatic activity measured in intact transfected cells. The present data provide the answer to the question of why previous researchers could hardly detect type 5 17betaHSD activity. Indeed, all previous publications used cell or tissue homogenates or purified enzymes. Under such conditions, only the low level, but stable, 3alphaHSD and 17betaHSD activities could be measured, whereas the high level, but highly unstable, 17betaHSD activity could not be measured. As type 5 17betaHSD shares 84%, 86%, and 88% amino acid identity with types 1 and 3 3alphaHSD and 20alphaHSDs, respectively, Northern blot analysis used in previous studies could not provide unequivocal information. In this report, we used a more specific ribonuclease protection assay and could thus show that human type 5 17betaHSD is expressed in the liver, adrenal, and prostate; in prostatic cancer cell lines DU-145 and LNCaP; as well as in bone carcinoma (MG-63) cells. By analogy with type 3 17betaHSD, which is responsible for the formation of androgens in the testis, the expression of type 5 17betaHSD in the prostate and bone cells suggests that this enzyme is involved in the formation of active intracellular androgens in these tissues.
    [Abstract] [Full Text] [Related] [New Search]