These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium. Author: Rytved KA, Nielsen R. Journal: Pflugers Arch; 1999 Jan; 437(2):213-8. PubMed ID: 9929561. Abstract: We examined the effect of prostaglandin E2 (PGE2) on antidiuretic hormone (ADH)-dependent Na+ transport and cAMP production in isolated frog skin epithelium. ADH caused an increase in transepithelial Na+ transport and a decrease in cellular potential, indicating an increase in apical Na+ permeability. Subsequent addition of PGE2 decreased Na+ transport and repolarised the cells. The PGE2 receptor EP1/3-selective analogue sulprostone and the PGE2 receptor EP2/3-selective analogue misoprostol were able to mimic the effect of PGE2. ADH increased cellular cAMP levels, whereas PGE2, sulprostone and misoprostol were able to reduce the ADH-dependent cAMP production. Measurements of intracellular Ca2+ concentration ([Ca2+]i) revealed that it was unaffected by both PGE2 and sulprostone. The inhibitory effect of PGE2 on ADH-dependent Na+ transport was also observed in Ca2+-depleted epithelia. We conclude that ADH stimulates transepithelial Na+ transport by increasing cellular cAMP levels, whereas PGE2 inhibits ADH-dependent Na+ transport by activating EP3-type receptors, which decrease cellular cAMP levels. We have found no evidence that [Ca2+]i is involved in the regulation of ADH-dependent Na+ transport by PGE2.[Abstract] [Full Text] [Related] [New Search]