These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III.
    Author: Pereira MM, Carita JN, Teixeira M.
    Journal: Biochemistry; 1999 Jan 26; 38(4):1268-75. PubMed ID: 9930987.
    Abstract:
    A novel multihemic cytochrome bc complex was isolated from the membranes of Rhodothermus marinus. It is a complex with a minimum of three subunits (43, 27, and 18 kDa), containing five low-spin heme centers of the B and C types, in a 1:4 ratio. All the C-type hemes are in the same subunit (27 kDa). Three distinct redox transitions, at 235, 80, and -45 mV, were observed by visible redox titrations. The first involves one B- and one C-type hemes, and in the other two transitions one and two C-type hemes are involved, respectively. Spectroscopic data strongly suggest that the two hemes intervening in the last transition are in van der Waals contact, yielding a split Soret band. Electron paramagnetic resonance spectra of the oxidized complex show resonances of five low-spin ferric heme centers. Upon reduction with ascorbate, all these resonances vanish and a new one attributed to the last pair of hemes appears. A [3Fe-4S]1+/0 center copurifies with this complex, having a high reduction potential of +140 mV. No Rieske-type centers are detected in R. marinus and no effect is observed in the respiratory rates when the typical bc1 complex inhibitors are present, suggesting that such a complex is absent in R. marinus [Pereira et al. (1994) FEBS Lett. 352, 327-330]. The newly isolated cytochrome bc complex has quinol:cytochrome c or high-potential iron-sulfur protein (HiPIP) oxidoreductase activity, being a functional analogue of the canonical bc1 complexes; i.e., it is the complex III in R. marinus. This complex plays a central role in this bacterium's electron-transfer chain, coupling the electron transfer between the quinols reduced by the dehydrogenases and the HiPIP, the final electron donor to the terminal oxidases [Pereira, M. M., Carita, J. N., and Teixeira, M. (1999) Biochemistry 38, 1276-1283].
    [Abstract] [Full Text] [Related] [New Search]