These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of chromosome 19 transfer on blood pressure in the spontaneously hypertensive rat.
    Author: St Lezin E, Zhang L, Yang Y, Wang JM, Wang N, Qi N, Steadman JS, Liu W, Kren V, Zidek V, Krenova D, Churchill PC, Churchill MC, Pravenec M.
    Journal: Hypertension; 1999 Jan; 33(1 Pt 2):256-60. PubMed ID: 9931113.
    Abstract:
    Linkage studies in the spontaneously hypertensive rat (SHR) have suggested that a gene or genes regulating blood pressure may exist on rat chromosome 19 in the vicinity of the angiotensinogen gene. To test this hypothesis, we measured blood pressure in SHR progenitor and congenic strains that are genetically identical except for a segment of chromosome 19 containing the angiotensinogen gene transferred from the normotensive Brown Norway (BN) strain. Transfer of this segment of chromosome 19 from the BN strain onto the genetic background of the SHR induced significant decreases in systolic and diastolic blood pressures in the recipient SHR chromosome 19 congenic strain. To test for differences in angiotensinogen gene expression between the congenic and progenitor strains, we measured angiotensinogen mRNA levels in a variety of tissues, including aorta, brain, kidney, and liver. We found no differences between the progenitor and congenic strains in the angiotensinogen coding sequence or in angiotensinogen expression that would account for the blood pressure differences between the strains. In addition, no significant differences in plasma levels of angiotensinogen or plasma renin activity were detected between the 2 strains. Thus, transfer of a segment of chromosome 19 containing angiotensinogen from the BN rat into the SHR induces a decrease in blood pressure without inducing any major changes in plasma angiotensinogen levels or plasma renin activity. These results indicate that the differential chromosome segment trapped in the SHR chromosome 19 congenic strain contains a quantitative trait locus that influences blood pressure in the SHR but that this blood pressure effect is not explained by differences in plasma angiotensinogen levels or angiotensinogen expression.
    [Abstract] [Full Text] [Related] [New Search]