These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. Author: Beach JM, Schwenzer KJ, Srinivas S, Kim D, Tiedeman JS. Journal: J Appl Physiol (1985); 1999 Feb; 86(2):748-58. PubMed ID: 9931217. Abstract: A method for noninvasive measurement of Hb O2 saturation (SO2) in retinal blood vessels by digital imaging was developed and tested. Images of vessels were recorded at O2-sensitive and O2-insensitive wavelengths (600 and 569 nm, respectively) by using a modified fundus camera with an image splitter coupled to an 18-bit digital camera. Retinal arterial SO2 was varied experimentally by having subjects breathe mixtures of O2 and N2 while systemic arterial SO2 was monitored with a pulse oximeter. Optical densities (ODs) of vascular segments were determined using a computer algorithm to track the path of reflected light intensity along vessels. During graded hypoxia the OD ratio (ODR = OD600/OD569) bore an inverse linear relationship to systemic SO2. Compensation for the influence of choroidal pigmentation significantly reduced variation in the arterial SO2 measurements among subjects. An O2 sensitivity of 0.00504 +/- 0.00029 (SE) ODR units/%SO2 was determined. Retinal venous SO2 at normoxia was 55 +/- 3.38% (SE). Breathing 100% O2 increased venous SO2 by 19.2 +/- 2.9%. This technique, when combined with blood flow studies in human subjects, will enable the study of retinal O2 utilization under experimental and various disease conditions.[Abstract] [Full Text] [Related] [New Search]