These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. Author: Aridor M, Bannykh SI, Rowe T, Balch WE. Journal: J Biol Chem; 1999 Feb 12; 274(7):4389-99. PubMed ID: 9933643. Abstract: The COPII coat complex found on endoplasmic reticulum (ER)-derived vesicles plays a critical role in cargo selection. We now address the potential role of biosynthetic cargo in modulating COPII coat assembly and vesicle budding. The ER accumulation of vesicular stomatitis glycoprotein (VSV-G), a transmembrane protein, or the soluble PiZ variant of alpha1-antitrypsin, reduced levels of general COPII vesicle formation in vivo. Consistent with this result, conditions that prevent the export of VSV-G from the ER led to a significant inhibition of general COPII vesicle budding from ER microsomes and the export of an endogenous recycling protein p58 in vitro. In contrast, synchronized export of VSV-G stimulated COPII vesicle budding both in vivo and in vitro. Under conditions where VSV-G is retained in the ER, we find that it can to be recovered in pre-budding complexes containing COPII components. These results suggest that the export of biosynthetic cargo is integrated with ER functions involved in protein folding and oligomerization. The ability of biosynthetic cargo to prevent or enhance ER export suggests that interactions of cargo with the COPII machinery contribute to the formation of vesicles budding from the ER.[Abstract] [Full Text] [Related] [New Search]