These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of barley ADP-glucose pyrophosphorylase in Escherichia coli: processing and regulatory considerations. Author: Luo C, Kleczkowski LA. Journal: Phytochemistry; 1999 Jan; 50(2):209-14. PubMed ID: 9933946. Abstract: Full length cDNAs for barley ADP-glucose pyrophosphorylase (AGPase) coding for the large subunits of the endosperm and leaf homologues of the enzyme (AGPase-S1 and -S2, respectively) and for the small subunit protein from endosperm (AGPase-B1), have been expressed in Escherichia coli. The cDNAs for AGPase-S1 and -S2 required different induction conditions for their maximal expression and they encoded immunologically distinct proteins. The AGPase-S1 that was produced by E. coli had the same M(r) (58 kDa) as the corresponding protein in barley crude endosperm extracts, whereas the bacteria-produced AGPase-S2 (55 kDa) was larger than its counterpart from barley leaf preparations (53 kDa). An enzymatically active AGPase expressed in E. coli from a double construct containing cDNAs for AGPase-S1 and -B1 subunits was insensitive to the activation by 3-phosphoglycerate and to inhibition by inorganic phosphate, similarly to the enzyme in barley endosperm. Neither AGPase-S1 nor -B1 were active when expressed alone in the bacteria. The data are discussed with respect to possible mechanisms of intracellular targeting of immature AGPase-S proteins in barley tissues and regarding previous data on effector regulation of the barley enzyme.[Abstract] [Full Text] [Related] [New Search]