These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Methionine transport by pig colonic mucosa measured during early post-natal development. Author: James PS, Smith MW. Journal: J Physiol; 1976 Oct; 262(1):151-68. PubMed ID: 994036. Abstract: New-born pig proximal colon, incubated in vitro, transports methionine with a Km of 0-33 mM and a Vmax of 0-62 mumole cm-2h-1. There is still a net transport of methionine on day 4, but the Km now increases to 10 mM and the Vmax falls to 0-15 mumole cm-2h-1. There is no net transport of methionine across proximal colons taken from 10-day-old pigs. 2. The mean intramucosal concentration of methionine, following incubation in medium containing 1 mM methionine, is 7-18+/-0-8 mM for the new-born, 0-55+/-0-05 mM for the 4-day-old and 0-31+/-0-06 mM for the 10-day-old pig. 3. Both methionine and glucose cause an immediate increase in the short-circuit current of new-born and 1-day-old pig colons. The kinetics for this interaction with methionine gives a Km for methionine of 0-24 mM and a maximum effect of 27 muA cm-2. This effect is not seen in 4- or 10-day-old pigs. 4. Net Na+ transport across the new-born pig proximal colon, measured in the absence of methionine, is about three times that calculated from the measured short-circuit current. Methionine increases the mucosal to serosal flux of Na+ by an amount roughly equal to that predicted from the increase in short-circuit current. The ability of glucose and methionine to affect short-circuit current is lost by day 4. 5. Short-circuit current, measured in the absence of methionine or glucose, increases between day 1 and 2 of post-natal life. This increased electrogenicity is maintained for up to at least 10 days after birth. 6. The pig proximal colon has many of the properties of a small intestine at birth. It actively transports methionine and the presence of methionine stimulates the absorption of Na+. These effects could be physiologically important in the pig, where the normal absorptive function of the intestine is temporarily inhibited at birth by the intestinal transmission of immune globulins.[Abstract] [Full Text] [Related] [New Search]