These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative analysis of retinal ganglion cell classifications.
    Author: Hochstein S, Shapley RM.
    Journal: J Physiol; 1976 Nov; 262(2):237-64. PubMed ID: 994039.
    Abstract:
    The classification of cat retinal ganglion cells as X or Y on the basis of linearity or nonlinearity of spatial summation has been confirmed and extended. Recordings were taken from optic tract fibres of anaesthetized, paralysed cats. 2. When an alternating phase sine wave grating was used as a stimulus, X cells had null positions and Y cells responded at all positions of the grating. 3. These results did not depend on the temporal wave form or the temporal frequency of pattern alternation over a wide range. 4. At high spatial frequencies for the particular cell, a Y cell gave abig 'on-off' response, or frequency doubling, at all positions of the grating, while an X cell did not. 5. The use of contrast sensitivity versus spatial phase also served to differentiate the two cell types. With an alternating sine grating stimulus X cells had a sinusoidal dependence on spatial phase, while each Y cell's sensitivity depended in a complicated manner on spatial phase. 6. Sensitivity versus spatial phase for different Fourier components of the neural response also separated the two classes of cells. Significant second harmonic distortion was present in Y cells. The second harmonic component was spatial phase insensitive, and became dominant at high spatial frequencies. 7. The maximum of the 2nd/1st harmonic ratio was taken as an index of nonlinearity. X cells always had a nonlinearity index less than 1 while in Y cells this index always exceeded 1. 8. Response to spots, diffuse light and drifting gratings were compared to the nonlinearity index as a basis for classifying cells. The nonlinearity index was most reliable because it was least dependent on retinal eccentricity.
    [Abstract] [Full Text] [Related] [New Search]