These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. Author: Hochstein S, Shapley RM. Journal: J Physiol; 1976 Nov; 262(2):265-84. PubMed ID: 994040. Abstract: 1. The mechanism which makes Y cells different from X cells was investigated. 2. Spatial frequency contrast sensitivity functions for the fundamental and second harmonic responses of Y cells to alternating phase gratings were determined. 3. The fundamental spatial frequency response was predicted by the Fourier transform of the sensitivity profile of the Y cell. The high spatial frequency cut-off of a Y cell's fundamental response was in this way related to the centre of the cell's receptive field. 4. The second harmonic response of a Y cell did not cut off at such a low spatial frequency as the fundamental response. This result indicated that the source of the second harmonic was a spatial subunit of the receptive field smaller in spatial extent than the centre. 5. Contrast sensitivity vs. spatial phase for a Y cell was measured under three conditions: a full grating, a grating seen through a centrally located window, a grating partially obscured by a visual shutter. The 2nd/1st harmonic sensitivity ratio went down with the window and up with the shutter. These results implied that the centre of Y cells was linear and also that the nonlinear subunits extended into the receptive field surround. 6. Spatial localization of the nonlinear subunits was determined by means of a spatial dipole stimulus. The nonlinear subunits overlapped the centre and surround of the receptive field and extended beyond both. 7. The nature of the Y cell nonlinearity was found to be rectification, as determined from measurements of the second harmonic response as a function of contrast. 8. Spatial models for the Y cell receptive field are proposed.[Abstract] [Full Text] [Related] [New Search]