These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular response in subretinal neovascularization induced by bFGF-impregnated microspheres.
    Author: Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ.
    Journal: Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):524-8. PubMed ID: 9950614.
    Abstract:
    PURPOSE: To determine the sequence of cellular changes associated with a new rabbit model of subretinal neovascularization (SRN) induced by subretinal injection of basic fibroblast growth factor (bFGF)-impregnated microspheres. METHODS: bFGF-impregnated gelatin microspheres, prepared by forming a polyion complex between gelatin and bFGF, were subretinally implanted into rabbit eyes. The eyes were studied by immunochemistry at 3 days to 8 weeks after implantation. Antibodies to CD4, CD8, cytokeratin, CD31, glial fibrillary acidic protein (GFAP), and RAM11 were used. RESULTS: Cytokeratin-positive retinal pigment epithelial (RPE) cells appeared on day 3 and continued to increase in number in the subretinal space throughout the growth of the SRN membrane, becoming the predominant cell type. Macrophages (RAM11-positive) appeared early, but most disappeared within 7 days. GFAP-positive Müller cells were evident early in the retina but migrated into the subretinal space after 7 days; the gliotic adhesion they formed between the retina and the SRN membrane was prominent at 8 weeks. CD31-positive endothelial cells were first evident at 14 days and formed neovascular channels that were still present for up to 8 weeks. CD4- and CD8-positive lymphocytes appeared in the early stages but were few in number. CONCLUSIONS: SRN membranes are primarily composed of RPE cells and vascular endothelial cells. The membrane adheres to the retina by a gliotic band. The cellular components involved in the membrane of this model resemble those found in SRN membranes removed from patients with age-related macular degeneration.
    [Abstract] [Full Text] [Related] [New Search]