These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the mechanisms involved in the gender differences in hepatic taurocholate uptake.
    Author: Simon FR, Fortune J, Iwahashi M, Bowman S, Wolkoff A, Sutherland E.
    Journal: Am J Physiol; 1999 Feb; 276(2):G556-65. PubMed ID: 9950831.
    Abstract:
    Gender differences in the hepatic transport of organic anions is well established. Although uptake of many organic anions is greater in females, sodium-dependent taurocholate uptake is greater in hepatocytes from male rats. We examined the hypothesis that endogenous estrogens alter the number of sinusoidal bile acid transporters and/or decrease membrane lipid fluidity. The initial sodium-dependent uptake of [3H]taurocholate was 75% greater in hepatocytes from males than from either intact or oophorectomized females rats. Taurocholate maximal uptake was increased twofold (P < 0.03) without a significant change in the Michaelis-Menten constant. Sinusoidal membrane fractions were isolated from male and female rat livers with equal specific activities and enrichments of Na+-K+-ATPase. Males had a significant (P < 0.05) increase in cholesterol esters and phosphatidylethanolamine-to-phosphatidylcholine ratio. Fluorescence polarization indicated decreased lipid fluidity in females. In females, expression of the sodium-dependent taurocholate peptide (Ntcp) and mRNA were selectively decreased to 46 +/- 9 and 54 +/- 4% (P < 0.01), respectively, and the organic anion transporter peptide (Oatp) and Na+-K+-ATPase alpha-subunit were not significantly different. Nuclear run-on analysis indicated a 47% (P < 0.05) decrease in Ntcp transcription, without a significant change in Oatp. In conclusion, these studies demonstrated that decreased sodium-dependent bile salt uptake in female hepatocytes was due to decreased membrane lipid fluidity and a selective decrease in Ntcp.
    [Abstract] [Full Text] [Related] [New Search]