These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC. Author: Hu K, Li GR, Nattel S. Journal: Am J Physiol; 1999 Feb; 276(2):H488-95. PubMed ID: 9950849. Abstract: Both protein kinase C (PKC) and adenosine receptor activation have been shown to enhance ATP-sensitive K+ (KATP) channels. The present studies were designed to determine whether PKC mediates adenosine effects on the KATP channel. The dependence of KATP channel activity (nPo) on intracellular ATP concentration ([ATP]i) was determined in excised rabbit ventricular membrane patches. External adenosine (100 microM in the pipette solution) significantly increased KATP nPo at all [ATP]i between 5 and 50 microM by decreasing channel sensitivity to [ATP]i (dissociation constant increased from 7.4 +/- 0.8 to 22.2 +/- 3.1 microM, P < 0.001), an effect blocked by the adenosine receptor antagonist 8-phenyltheophylline (10 microM). When the highly selective PKC blocker bisindolylmaleimide (BIM) was included in the internal (bath) solution, the KATP-stimulating action of adenosine was prevented. The addition of BIM to the superfusate rapidly inhibited KATP channels activated by adenosine. Endogenous PKC activation by phorbol 12,13-didecanoate (PDD), but not administration of the inactive congener 4alpha-PDD, enhanced KATP activity. Internal guanosine 5'-O-(2-thiodiphosphate) prevented KATP activation by adenosine, an effect which could be overridden by exposure to PDD. We conclude that PKC mediates adenosine activation of KATP channels in excised membrane patches in a membrane-delimited fashion.[Abstract] [Full Text] [Related] [New Search]