These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elevated ovarian expression and serum concentration of alpha inhibin in the luteal phase during follicular development in the squirrel monkey (Saimiri boliviensis) compared to the human. Author: Yeoman RR, Crews LM, Zimmer DB, Dahl KD, Rizk B, Abee CR. Journal: Am J Primatol; 1999; 47(2):165-79. PubMed ID: 9973269. Abstract: The goal of the present investigation was to determine in the squirrel monkey the source and pattern of inhibin, a hormone known to effect reproductive steroid levels via pituitary and ovarian mechanisms. Since this seasonally polyestrous species is known to have elevated serum levels of reproductive steroids compared to other primates, the levels of ovarian alpha subunit mRNA expression and serum total alpha inhibin, estradiol, progesterone, and luteinizing hormone were measured and compared to human levels. Expression of the alpha subunit was robust in monkey luteal tissue compared to expression in human luteal tissue. Squirrel monkey serum inhibin peaked 4 days after the luteinizing hormone surge and correlated with progesterone changes. These luteal serum levels of inhibin were greater than 12 times higher than the human levels yet bio-LH activities were less than in the human during the luteal phase. Inhibin concentrations during the nonbreeding season were generally half the levels measured in the breeding season and undetectable in ovariectomized animals. However, exogenous FSH stimulation induced a marked rise in inhibin, which correlated with an estradiol rise. In conclusion, abundant alpha inhibin subunit expression in the luteal ovary of the squirrel monkey and loss of serum delectability in ovariectomized animals indicates that the principle source of inhibin in the squirrel monkey is the ovary. Elevated serum inhibin levels during the luteal phase concurrent with ovulatory-size follicular development is unique among species studied thus far. Possible simultaneous inhibin production from both follicular and luteal tissue may be responsible for the exceptionally high inhibin levels.[Abstract] [Full Text] [Related] [New Search]