These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucose phosphorylation is essential for the turnover of neutral lipid and the second stage assembly of triacylglycerol-rich ApoB-containing lipoproteins in primary hepatocyte cultures. Author: Brown AM, Wiggins D, Gibbons GF. Journal: Arterioscler Thromb Vasc Biol; 1999 Feb; 19(2):321-9. PubMed ID: 9974414. Abstract: Primary hepatocytes cultured in a medium supplemented with amino acids and lipogenic substrates responded to increased extracellular glucose by increasing the secretion of VLDL apoB. This effect was accompanied by an increased secretion of VLDL triacylglycerol (TAG) derived from endogenous stores. Glucose also stimulated intracellular TAG mobilization via the TAG lipolysis/esterification cycle. All these effects were abolished in the presence of mannoheptulose (MH), an inhibitor of glucose phosphorylation. Glucose also gave rise to a modest (50% to 60%) increase in the incorporation of 35S methionine into newly synthesized apoB (P<0.05) and to a doubling of newly-synthesized apoB secretion as VLDL (P<0. 05). The magnitude of these effects was similar for apoB-48 and for apoB-100. MH inhibited apoB-48 and apoB-100 synthesis and VLDL secretion at all glucose concentrations. The effects of glucose and MH on the secretion of newly-synthesized apoB-48 or apoB-100 as small dense particles were less pronounced. Glucose had no effects on the posttranslational degradation of newly-synthesized apoB-100 or apoB-48. However, this process was significantly enhanced by MH. The results suggest that glucose stimulates TAG synthesis, turnover, and output as VLDL. These effects are associated with an increased VLDL output of apoB mediated mainly by an increase in the net synthesis of both apoB-48 and apoB-100. All these changes are prevented by interference with glucose phosphorylation. Output of small, dense, apoB-containing particles is relatively unaffected by the glucose and MH-induced changes in TAG synthesis and lipolysis, an observation which suggests that only the bulk lipid addition step of VLDL assembly is affected by changes in glucose metabolism.[Abstract] [Full Text] [Related] [New Search]