These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Author: Borutaite V, Morkuniene R, Brown GC. Journal: Biochim Biophys Acta; 1999 Jan 06; 1453(1):41-8. PubMed ID: 9989244. Abstract: Prolonged heart ischaemia causes an inhibition of oxidative phosphorylation and an increase of Ca2+ in mitochondria. We investigated whether elevated Ca2+ induces changes in the oxidative phosphorylation system relevant to ischaemic damage, and whether Ca2+ and other inducers of mitochondrial permeability transition cause the release of cytochrome c from isolated heart mitochondria. We found that 5 microM free Ca2+ induced changes in oxidative phosphorylation system similar to ischaemic damage: increase in the proton leak and inhibition of the substrate oxidation system related to the release of cytochrome c from mitochondria. The phosphorylating system was not directly affected by high Ca2+ and ischaemia. The release of cytochrome c from mitochondria was caused by Ca2+ and 0.175-0.9 mM peroxynitrite but not by NO, and was prevented by cyclosporin A. Adenylate kinase and creatine kinase were also released after incubation of mitochondria with Ca2+, however, the activity of citrate synthase in the incubation medium with high and low Ca2+ did not change. The data suggest that release of cytochrome c and other proteins of intermembrane space may be due to the opening of the mitochondrial permeability transition pore, and may be partially responsible for inhibition of mitochondrial respiration induced by ischaemia, high calcium, and oxidants.[Abstract] [Full Text] [Related] [New Search]