These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of interaction of thrombospondin with human endothelium and inhibition of sickle erythrocyte adhesion to human endothelial cells by heparin.
    Author: Gupta K, Gupta P, Solovey A, Hebbel RP.
    Journal: Biochim Biophys Acta; 1999 Jan 06; 1453(1):63-73. PubMed ID: 9989246.
    Abstract:
    Thrombospondin (TSP) mediates sickle erythrocyte adhesion to endothelium, but the mechanism remains unknown. Since TSP is comprised of heterogeneously distinct domains, this adhesion may depend on the interaction of specific regions of TSP with different cell surface receptors. To examine the mechanisms of interaction of TSP with human umbilical vein endothelial cells (HUVEC), we performed binding studies using soluble [125I]TSP. Our data showed that (i) monoclonal antibodies (MoAbs) against cell surface heparan sulfate (HS) or the heparin-binding domain of TSP, or cleavage of HS on HUVEC by heparitinase reduced TSP binding by 28-40%, (ii) the RGD peptide or MoAbs against integrin alpha v beta 3 or the calcium binding region of TSP inhibited binding by 18-28%, and (iii) a MoAb against the cell-binding domain of TSP inhibited binding by 36%. Unmodified heparin inhibited the binding of TSP to endothelial cells by 70% and did so far more effectively than selectively desulfated heparins, HS or chondroitin sulfate. Heparin inhibited TSP binding to HUVEC at much lower concentrations than were required to inhibit TSP binding to sickle erythrocytes. Unmodified heparin effectively inhibited the TSP-mediated adhesion of sickle erythrocytes to HUVEC. These data imply that cell surface HS-mediated mechanisms play a key role in TSP-mediated sickle erythrocyte adhesion to endothelium, and heparin may be of use for inhibition of this adhesion.
    [Abstract] [Full Text] [Related] [New Search]