These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Association with E2F-1 governs intracellular trafficking and polyubiquitination of DP-1. Author: Magae J, Illenye S, Chang YC, Mitsui Y, Heintz NH. Journal: Oncogene; 1999 Jan 21; 18(3):593-605. PubMed ID: 9989809. Abstract: The cell cycle-regulated transcription factor E2F is a family of heterodimers composed of E2F and DP protein subunits. While DP proteins stabilize DNA binding of E2F proteins, and influence the entry of E2F-4 and E2F-5 into the nucleus, the role of DP proteins in E2F-dependent gene expression is not well understood. Using immunolocalization, immunoprecipitation, and cell fractionation experiments, here we show association with E2F subunits governs intracellular trafficking and ubiquitination of DP-1. In transient transfection experiments, DP-1 polypeptides that stably bound E2F-1 entered the nucleus. DP-1 proteins that failed to associate with E2F subunits accumulated in the cell cytoplasm as polyubiquitinated DP-1. A Chinese hamster cell line that conditionally expresses HA-DP-1 was used to examine the effect of DP-1 on cell cycle progression. In serum response experiments, moderate increases in HA-DP-1 led to a threefold increase in E2F DNA binding activity in vitro, a corresponding increase in dhfr gene expression during transition of G1, and higher rates of S phase entry. However, flow cytometry showed cells expressing very high levels of HA-DP-1 failed to enter the S phase. Inhibition of cell cycle progression by high levels of HA-DP-1 was associated with the accumulation of other ubiquitinated cellular proteins, including c-jun and the cyclin-dependent kinase inhibitor p21, indicating that degradation of ubiquitinated proteins is required for progression from G0 to S phase even in the presence of activated E2F. Under similar conditions, expression of E2F-1 reduced the levels of ubiquitinated cellular proteins and accelerated cell cycle progression. Our studies indicate association with E2F subunits prevents ubiquitin-dependent degradation of DP-1 in the cytoplasm by promoting nuclear entry of E2F/DP heterodimers.[Abstract] [Full Text] [Related] [New Search]