These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY, Chu ZT, Tao H, Warshel A. Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821 [Abstract] [Full Text] [Related]
4. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. van Lipzig MM, ter Laak AM, Jongejan A, Vermeulen NP, Wamelink M, Geerke D, Meerman JH. J Med Chem; 2004 Feb 12; 47(4):1018-30. PubMed ID: 14761204 [Abstract] [Full Text] [Related]
5. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Genheden S, Ryde U. Proteins; 2012 May 12; 80(5):1326-42. PubMed ID: 22274991 [Abstract] [Full Text] [Related]
6. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms. Tounge BA, Rajamani R, Baxter EW, Reitz AB, Reynolds CH. J Mol Graph Model; 2006 May 12; 24(6):475-84. PubMed ID: 16293430 [Abstract] [Full Text] [Related]
8. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. Tong Y, Mei Y, Li YL, Ji CG, Zhang JZ. J Am Chem Soc; 2010 Apr 14; 132(14):5137-42. PubMed ID: 20302307 [Abstract] [Full Text] [Related]
9. New parameterization approaches of the LIE method to improve free energy calculations of PlmII-Inhibitors complexes. Valiente PA, Gil A, Batista PR, Caffarena ER, Pons T, Pascutti PG. J Comput Chem; 2010 Nov 30; 31(15):2723-34. PubMed ID: 20839299 [Abstract] [Full Text] [Related]
10. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. Baginski M, Fogolari F, Briggs JM. J Mol Biol; 1997 Nov 28; 274(2):253-67. PubMed ID: 9398531 [Abstract] [Full Text] [Related]
14. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation. Pei J, Wang Q, Zhou J, Lai L. Proteins; 2004 Dec 01; 57(4):651-64. PubMed ID: 15390269 [Abstract] [Full Text] [Related]
15. Incorporating receptor flexibility in the molecular design of protein interfaces. Li L, Liang S, Pilcher MM, Meroueh SO. Protein Eng Des Sel; 2009 Sep 01; 22(9):575-86. PubMed ID: 19643976 [Abstract] [Full Text] [Related]
16. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Ferrari AM, Degliesposti G, Sgobba M, Rastelli G. Bioorg Med Chem; 2007 Dec 15; 15(24):7865-77. PubMed ID: 17870536 [Abstract] [Full Text] [Related]
19. Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method. Smith RH, Jorgensen WL, Tirado-Rives J, Lamb ML, Janssen PA, Michejda CJ, Kroeger Smith MB. J Med Chem; 1998 Dec 17; 41(26):5272-86. PubMed ID: 9857095 [Abstract] [Full Text] [Related]
20. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations. Bartels C, Widmer A, Ehrhardt C. J Comput Chem; 2005 Sep 17; 26(12):1294-305. PubMed ID: 15981257 [Abstract] [Full Text] [Related] Page: [Next] [New Search]