These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 10036287

  • 1. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo.
    Edwards JA, Cline HT.
    J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287
    [Abstract] [Full Text] [Related]

  • 2. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA, Fuertes AJC, Short G, Donohue KC, Shao H, Quintanilla J, Malakzadeh P, Cohen-Cory S.
    Neural Dev; 2018 Sep 15; 13(1):22. PubMed ID: 30219101
    [Abstract] [Full Text] [Related]

  • 3. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S, Nikolakopoulou AM, Dirks R, Martens GJ, Cohen-Cory S.
    J Neurosci; 2007 Mar 07; 27(10):2444-56. PubMed ID: 17344382
    [Abstract] [Full Text] [Related]

  • 4. Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
    Cogen J, Cohen-Cory S.
    J Neurobiol; 2000 Nov 05; 45(2):120-33. PubMed ID: 11018773
    [Abstract] [Full Text] [Related]

  • 5. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB, Delaney KR, Tank DW.
    J Neurophysiol; 1996 Jul 05; 76(1):381-400. PubMed ID: 8836232
    [Abstract] [Full Text] [Related]

  • 6. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT, Fleming MR, Leu B.
    J Neurobiol; 2004 Feb 15; 58(3):328-40. PubMed ID: 14750146
    [Abstract] [Full Text] [Related]

  • 7. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N, Hammond S, Otsuna H, Chien CB, Burrone J, Meyer MP.
    J Neurosci; 2010 Aug 11; 30(32):10939-51. PubMed ID: 20702722
    [Abstract] [Full Text] [Related]

  • 8. Nicotinic potentiation of frog retinotectal transmission in tectum layer F by α3β2, α4β2, α2β4, α6β2, or α7 acetylcholine receptor subtypes.
    Baginskas A, Kuraitė V, Kuras A.
    Medicina (Kaunas); 2015 Aug 11; 51(2):117-25. PubMed ID: 25975881
    [Abstract] [Full Text] [Related]

  • 9. Distribution of synaptic vesicle proteins within single retinotectal axons of Xenopus tadpoles.
    Pinches EM, Cline HT.
    J Neurobiol; 1998 Jun 15; 35(4):426-34. PubMed ID: 9624623
    [Abstract] [Full Text] [Related]

  • 10. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo.
    Rajan I, Witte S, Cline HT.
    J Neurobiol; 1999 Feb 15; 38(3):357-68. PubMed ID: 10022578
    [Abstract] [Full Text] [Related]

  • 11. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
    Yates PA, Roskies AL, McLaughlin T, O'Leary DD.
    J Neurosci; 2001 Nov 01; 21(21):8548-63. PubMed ID: 11606643
    [Abstract] [Full Text] [Related]

  • 12. Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study.
    Titmus MJ, Tsai HJ, Lima R, Udin SB.
    Neuroscience; 1999 Nov 01; 91(2):753-69. PubMed ID: 10366031
    [Abstract] [Full Text] [Related]

  • 13. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo.
    Lom B, Cogen J, Sanchez AL, Vu T, Cohen-Cory S.
    J Neurosci; 2002 Sep 01; 22(17):7639-49. PubMed ID: 12196587
    [Abstract] [Full Text] [Related]

  • 14. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
    Witte S, Stier H, Cline HT.
    J Neurobiol; 1996 Oct 01; 31(2):219-34. PubMed ID: 8885202
    [Abstract] [Full Text] [Related]

  • 15. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H, O'Leary DD.
    J Neurosci; 1989 Nov 01; 9(11):3776-95. PubMed ID: 2585055
    [Abstract] [Full Text] [Related]

  • 16. Regulation of axonal EphA4 forward signaling is involved in the effect of EphA3 on chicken retinal ganglion cell axon growth during retinotectal mapping.
    Fiore L, Medori M, Spelzini G, Carreño CO, Carri NG, Sanchez V, Scicolone G.
    Exp Eye Res; 2019 Jan 01; 178():46-60. PubMed ID: 30237102
    [Abstract] [Full Text] [Related]

  • 17. Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo.
    Cantallops I, Haas K, Cline HT.
    Nat Neurosci; 2000 Oct 01; 3(10):1004-11. PubMed ID: 11017173
    [Abstract] [Full Text] [Related]

  • 18. Rapid activation of presynaptic nicotinic acetylcholine receptors by nerve-released transmitter.
    Rogers M, Sargent PB.
    Eur J Neurosci; 2003 Dec 01; 18(11):2946-56. PubMed ID: 14656290
    [Abstract] [Full Text] [Related]

  • 19. Melatonin decreases calcium levels in retinotectal axons of Xenopus laevis by indirect activation of group III metabotropic glutamate receptors.
    Prada C, Udin SB.
    Brain Res; 2005 Aug 16; 1053(1-2):67-76. PubMed ID: 16051198
    [Abstract] [Full Text] [Related]

  • 20. Nicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores.
    Brain KL, Trout SJ, Jackson VM, Dass N, Cunnane TC.
    Neuroscience; 2001 Aug 16; 106(2):395-403. PubMed ID: 11566509
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.