These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 10050006

  • 1. Depolarization-evoked Ca2+ release in a non-excitable cell, the rat megakaryocyte.
    Mahaut-Smith MP, Hussain JF, Mason MJ.
    J Physiol; 1999 Mar 01; 515 ( Pt 2)(Pt 2):385-90. PubMed ID: 10050006
    [Abstract] [Full Text] [Related]

  • 2. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes.
    Mason MJ, Hussain JF, Mahaut-Smith MP.
    J Physiol; 2000 Apr 15; 524 Pt 2(Pt 2):437-46. PubMed ID: 10766924
    [Abstract] [Full Text] [Related]

  • 3. Three cation influx currents activated by purinergic receptor stimulation in rat megakaryocytes.
    Somasundaram B, Mahaut-Smith MP.
    J Physiol; 1994 Oct 15; 480 ( Pt 2)(Pt 2):225-31. PubMed ID: 7532712
    [Abstract] [Full Text] [Related]

  • 4. Cytoplasmic Ca2+ oscillation in rat megakaryocytes evoked by a novel type of purinoceptor.
    Uneyama C, Uneyama H, Akaike N.
    J Physiol; 1993 Oct 15; 470():731-49. PubMed ID: 8308753
    [Abstract] [Full Text] [Related]

  • 5. Voltage-dependent Ca2+ release in rat megakaryocytes requires functional IP3 receptors.
    Mason MJ, Mahaut-Smith MP.
    J Physiol; 2001 May 15; 533(Pt 1):175-83. PubMed ID: 11351026
    [Abstract] [Full Text] [Related]

  • 6. ADP and inositol trisphosphate evoke oscillations of a monovalent cation conductance in rat megakaryocytes.
    Hussain JF, Mahaut-Smith MP.
    J Physiol; 1998 Sep 15; 511 ( Pt 3)(Pt 3):791-801. PubMed ID: 9714860
    [Abstract] [Full Text] [Related]

  • 7. Depolarisation-evoked Ca2+ waves in the non-excitable rat megakaryocyte.
    Thomas D, Mason MJ, Mahaut-Smith MP.
    J Physiol; 2001 Dec 01; 537(Pt 2):371-8. PubMed ID: 11731571
    [Abstract] [Full Text] [Related]

  • 8. Novel consequences of voltage-dependence to G-protein-coupled P2Y1 receptors.
    Gurung IS, Martinez-Pinna J, Mahaut-Smith MP.
    Br J Pharmacol; 2008 Jun 01; 154(4):882-9. PubMed ID: 18414379
    [Abstract] [Full Text] [Related]

  • 9. Regulation of the intracellular free calcium concentration in acutely dissociated neurones from rat nucleus basalis.
    Tatsumi H, Katayama Y.
    J Physiol; 1993 May 01; 464():165-81. PubMed ID: 8229797
    [Abstract] [Full Text] [Related]

  • 10. Na+ dependent Ca2+ influx induced by depolarization in neurons dissociated from rat nucleus basalis.
    Tatsumi H, Katayama Y.
    Neurosci Lett; 1995 Aug 18; 196(1-2):9-12. PubMed ID: 7501266
    [Abstract] [Full Text] [Related]

  • 11. A novel monovalent cation channel activated by inositol trisphosphate in the plasma membrane of rat megakaryocytes.
    Somasundaram B, Mahaut-Smith MP.
    J Biol Chem; 1995 Jul 14; 270(28):16638-44. PubMed ID: 7542650
    [Abstract] [Full Text] [Related]

  • 12. Activation of L-type Ca2+ channels after purinoceptor stimulation by ATP in an alveolar epithelial cell (L2).
    Dietl P, Haller T, Wirleitner B, Völkl H, Friedrich F, Striessnig J.
    Am J Physiol; 1995 Dec 14; 269(6 Pt 1):L873-83. PubMed ID: 8572250
    [Abstract] [Full Text] [Related]

  • 13. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O, Yaari Y, Konnerth A.
    J Physiol; 1997 Jul 01; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [Abstract] [Full Text] [Related]

  • 14. P2Y purinoceptor activation mobilizes intracellular Ca2+ and induces a membrane current in rat intracardiac neurones.
    Liu DM, Katnik C, Stafford M, Adams DJ.
    J Physiol; 2000 Jul 15; 526 Pt 2(Pt 2):287-98. PubMed ID: 10896718
    [Abstract] [Full Text] [Related]

  • 15. Guinea-pig megakaryocytes can respond to external ADP by activating Ca2(+)-dependent potassium conductance.
    Kawa K.
    J Physiol; 1990 Dec 15; 431():207-24. PubMed ID: 2100307
    [Abstract] [Full Text] [Related]

  • 16. Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+.
    Beuckelmann DJ, Wier WG.
    J Physiol; 1989 Jul 15; 414():499-520. PubMed ID: 2607439
    [Abstract] [Full Text] [Related]

  • 17. Intracellular Ca2+ regulation by the leech giant glial cell.
    Nett W, Deitmer JW.
    J Physiol; 1998 Feb 15; 507 ( Pt 1)(Pt 1):147-62. PubMed ID: 9490831
    [Abstract] [Full Text] [Related]

  • 18. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.
    Buckler KJ, Vaughan-Jones RD.
    J Physiol; 1994 Jul 01; 478 ( Pt 1)(Pt 1):157-71. PubMed ID: 7965831
    [Abstract] [Full Text] [Related]

  • 19. ADP-induced rapid inward currents through Ca(2+)-permeable cation channels in mouse, rat and guinea-pig megakaryocytes: a patch-clamp study.
    Kawa K.
    J Physiol; 1996 Sep 01; 495 ( Pt 2)(Pt 2):339-52. PubMed ID: 8887748
    [Abstract] [Full Text] [Related]

  • 20. Ca2+ and Sr2+ entry induced Ca2+ release from the intracellular Ca2+ store in smooth muscle cells of rat portal vein.
    Grégoire G, Loirand G, Pacaud P.
    J Physiol; 1993 Dec 01; 472():483-500. PubMed ID: 8145155
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.