These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 10064142

  • 21. Unfolding crystallins: the destabilizing role of a beta-hairpin cysteine in betaB2-crystallin by simulation and experiment.
    MacDonald JT, Purkiss AG, Smith MA, Evans P, Goodfellow JM, Slingsby C.
    Protein Sci; 2005 May; 14(5):1282-92. PubMed ID: 15840832
    [Abstract] [Full Text] [Related]

  • 22. The N-terminal domain of betaB2-crystallin resembles the putative ancestral homodimer.
    Clout NJ, Basak A, Wieligmann K, Bateman OA, Jaenicke R, Slingsby C.
    J Mol Biol; 2000 Dec 01; 304(3):253-7. PubMed ID: 11090271
    [Abstract] [Full Text] [Related]

  • 23. Energetics of domain-domain interactions and entropy driven association of beta-crystallins.
    Sergeev YV, Hejtmancik JF, Wingfield PT.
    Biochemistry; 2004 Jan 20; 43(2):415-24. PubMed ID: 14717595
    [Abstract] [Full Text] [Related]

  • 24. Structural and mechanical hierarchies in the alpha-crystallin domain dimer of the hyperthermophilic small heat shock protein Hsp16.5.
    Bertz M, Chen J, Feige MJ, Franzmann TM, Buchner J, Rief M.
    J Mol Biol; 2010 Jul 30; 400(5):1046-56. PubMed ID: 20595041
    [Abstract] [Full Text] [Related]

  • 25. Folding and self-assembly of the domains of betaB2-crystallin from rat eye lens.
    Wieligmann K, Mayr EM, Jaenicke R.
    J Mol Biol; 1999 Mar 05; 286(4):989-94. PubMed ID: 10047476
    [Abstract] [Full Text] [Related]

  • 26. The folding mechanism of a dimeric beta-barrel domain.
    de Prat-Gay G, Nadra AD, Corrales-Izquierdo FJ, Alonso LG, Ferreiro DU, Mok YK.
    J Mol Biol; 2005 Aug 19; 351(3):672-82. PubMed ID: 16023675
    [Abstract] [Full Text] [Related]

  • 27. Solution structure and calcium-binding properties of M-crystallin, a primordial betagamma-crystallin from archaea.
    Barnwal RP, Jobby MK, Devi KM, Sharma Y, Chary KV.
    J Mol Biol; 2009 Feb 27; 386(3):675-89. PubMed ID: 19138688
    [Abstract] [Full Text] [Related]

  • 28. Evolutionary relationships of the metazoan beta gamma-crystallins, including that from the marine sponge Geodia cydonium.
    Krasko A, Müller IM, Müller WE.
    Proc Biol Sci; 1997 Jul 22; 264(1384):1077-84. PubMed ID: 9263473
    [Abstract] [Full Text] [Related]

  • 29. Heterologous expression of gamma E-crystallin produces protein with an aberrant tertiary structure.
    Goode D, Crabbe MJ.
    Arch Biochem Biophys; 1994 Nov 15; 315(1):104-10. PubMed ID: 7979386
    [Abstract] [Full Text] [Related]

  • 30. Differential domain folding/unfolding of gamma-crystallins: existence of two distinct groups.
    Chakrabarti B.
    Indian J Biochem Biophys; 1994 Aug 15; 31(4):344-50. PubMed ID: 8002019
    [Abstract] [Full Text] [Related]

  • 31. Aggregation-prone near-native intermediate formation during unfolding of a structurally similar nonlenticular βγ-crystallin domain.
    Rajanikanth V, Srivastava SS, Singh AK, Rajyalakshmi M, Chandra K, Aravind P, Sankaranarayanan R, Sharma Y.
    Biochemistry; 2012 Oct 30; 51(43):8502-13. PubMed ID: 23043265
    [Abstract] [Full Text] [Related]

  • 32. Lens crystallins and their microbial homologs: structure, stability, and function.
    Jaenicke R, Slingsby C.
    Crit Rev Biochem Mol Biol; 2001 Oct 30; 36(5):435-99. PubMed ID: 11724156
    [Abstract] [Full Text] [Related]

  • 33. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ, Young MM, Takemoto LJ.
    Mol Vis; 2004 Nov 16; 10():857-66. PubMed ID: 15570221
    [Abstract] [Full Text] [Related]

  • 34. The crystallins: genes, proteins and diseases.
    Graw J.
    Biol Chem; 1997 Nov 16; 378(11):1331-48. PubMed ID: 9426193
    [Abstract] [Full Text] [Related]

  • 35. gammaN-crystallin and the evolution of the betagamma-crystallin superfamily in vertebrates.
    Wistow G, Wyatt K, David L, Gao C, Bateman O, Bernstein S, Tomarev S, Segovia L, Slingsby C, Vihtelic T.
    FEBS J; 2005 May 16; 272(9):2276-91. PubMed ID: 15853812
    [Abstract] [Full Text] [Related]

  • 36. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA, Leverenz VR, Fowler KE, Reddy VN, Giblin FJ.
    Exp Eye Res; 2000 Oct 16; 71(4):371-83. PubMed ID: 10995558
    [Abstract] [Full Text] [Related]

  • 37. Ageing and vision: structure, stability and function of lens crystallins.
    Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A.
    Prog Biophys Mol Biol; 2004 Nov 16; 86(3):407-85. PubMed ID: 15302206
    [Abstract] [Full Text] [Related]

  • 38. A cDNA cloned from Physarum polycephalum encodes new type of family 3 beta-glucosidase that is a fusion protein containing a calx-beta motif.
    Maekawa A, Hayase M, Yubisui T, Minami Y.
    Int J Biochem Cell Biol; 2006 Nov 16; 38(12):2164-72. PubMed ID: 16914364
    [Abstract] [Full Text] [Related]

  • 39. Expression of recombinant zeta-crystallin in Escherichia coli with the help of GroEL/ES and its purification.
    Goenka S, Rao CM.
    Protein Expr Purif; 2001 Mar 16; 21(2):260-7. PubMed ID: 11237687
    [Abstract] [Full Text] [Related]

  • 40. The domains of protein S from Myxococcus xanthus: structure, stability and interactions.
    Wenk M, Baumgartner R, Holak TA, Huber R, Jaenicke R, Mayr EM.
    J Mol Biol; 1999 Mar 12; 286(5):1533-45. PubMed ID: 10064714
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.