These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 10070956
1. Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status. Syljuåsen RG, Krolewski B, Little JB. Cancer Res; 1999 Mar 01; 59(5):1008-14. PubMed ID: 10070956 [Abstract] [Full Text] [Related]
2. Cytogenetic damage and the radiation-induced G1-phase checkpoint. Gupta N, Vij R, Haas-Kogan DA, Israel MA, Deen DF, Morgan WF. Radiat Res; 1996 Mar 01; 145(3):289-98. PubMed ID: 8927696 [Abstract] [Full Text] [Related]
3. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Li CY, Nagasawa H, Dahlberg WK, Little JB. Oncogene; 1995 Nov 02; 11(9):1885-92. PubMed ID: 7478618 [Abstract] [Full Text] [Related]
4. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I, Kohn KW. Cancer Res; 1993 Oct 15; 53(20):4776-80. PubMed ID: 8402660 [Abstract] [Full Text] [Related]
5. Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation. Bristow RG, Hu Q, Jang A, Chung S, Peacock J, Benchimol S, Hill R. Oncogene; 1998 Apr 09; 16(14):1789-802. PubMed ID: 9583677 [Abstract] [Full Text] [Related]
6. Absence of a radiation-induced first-cycle G1-S arrest in p53+ human tumor cells synchronized by mitotic selection. Nagasawa H, Keng P, Maki C, Yu Y, Little JB. Cancer Res; 1998 May 01; 58(9):2036-41. PubMed ID: 9581850 [Abstract] [Full Text] [Related]
7. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells. Nagasawa H, Li CY, Maki CG, Imrich AC, Little JB. Cancer Res; 1995 May 01; 55(9):1842-6. PubMed ID: 7728750 [Abstract] [Full Text] [Related]
8. Indistinct cell cycle checkpoint after u.v. damage in H-ras-transformed mouse liver cells despite normal p53 gene expression. Kadohama T, Tsuji K, Ogawa K. Oncogene; 1994 Oct 01; 9(10):2845-52. PubMed ID: 8084590 [Abstract] [Full Text] [Related]
9. Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Pocard M, Chevillard S, Villaudy J, Poupon MF, Dutrillaux B, Remvikos Y. Oncogene; 1996 Feb 15; 12(4):875-82. PubMed ID: 8632910 [Abstract] [Full Text] [Related]
10. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function. Bracey TS, Williams AC, Paraskeva C. Clin Cancer Res; 1997 Aug 15; 3(8):1371-81. PubMed ID: 9815821 [Abstract] [Full Text] [Related]
11. Hydrocarbon carcinogens evade cellular defense mechanism of G1 arrest in nontransformed and malignant lung cell lines. Khan QA, Anderson LM. Toxicol Appl Pharmacol; 2001 Jun 01; 173(2):105-13. PubMed ID: 11384212 [Abstract] [Full Text] [Related]
12. Late mitosis/early G1 phase and mid-G1 phase are not hypersensitive cell cycle phases for neoplastic transformation of HeLa x skin fibroblast human hybrid cells induced by fission-spectrum neutrons. Redpath JL, Antoniono RJ, Sun C, Gerstenberg HM, Blakely WF. Radiat Res; 1995 Jan 01; 141(1):37-43. PubMed ID: 7527914 [Abstract] [Full Text] [Related]
13. Alterations in the progression of cells through the cell cycle after exposure to alpha particles or gamma rays. Gadbois DM, Crissman HA, Nastasi A, Habbersett R, Wang SK, Chen D, Lehnert BE. Radiat Res; 1996 Oct 01; 146(4):414-24. PubMed ID: 8927713 [Abstract] [Full Text] [Related]
14. Biology of marrow stromal cell lines derived from long-term bone marrow cultures of Trp53-deficient mice. Epperly MW, Bray JA, Carlos TM, Prochownik E, Greenberger JS. Radiat Res; 1999 Jul 01; 152(1):29-40. PubMed ID: 10381838 [Abstract] [Full Text] [Related]
15. Early ultraviolet B-induced G1 arrest and suppression of the malignant phenotype by wild-type p53 in human squamous cell carcinoma cells. Courtois SJ, Woodworth CD, Degreef H, Garmyn M. Exp Cell Res; 1997 May 25; 233(1):135-44. PubMed ID: 9184083 [Abstract] [Full Text] [Related]
16. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M. Cancer Res; 1995 Apr 15; 55(8):1639-42. PubMed ID: 7712467 [Abstract] [Full Text] [Related]
17. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity. Warenius HM, Jones M, Gorman T, McLeish R, Seabra L, Barraclough R, Rudland P. Br J Cancer; 2000 Oct 15; 83(8):1084-95. PubMed ID: 10993658 [Abstract] [Full Text] [Related]
18. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. McIlwrath AJ, Vasey PA, Ross GM, Brown R. Cancer Res; 1994 Jul 15; 54(14):3718-22. PubMed ID: 8033090 [Abstract] [Full Text] [Related]
19. Spontaneous p53 mutation in murine mesothelial cells: increased sensitivity to DNA damage induced by asbestos and ionizing radiation. Cistulli CA, Sorger T, Marsella JM, Vaslet CA, Kane AB. Toxicol Appl Pharmacol; 1996 Nov 15; 141(1):264-71. PubMed ID: 8917699 [Abstract] [Full Text] [Related]
20. p53 mutational status and survival of human breast cancer MCF-7 cell variants after exposure to X rays or fission neutrons. Balcer-Kubiczek EK, Yin J, Lin K, Harrison GH, Abraham JM, Meltzer SJ. Radiat Res; 1995 Jun 15; 142(3):256-62. PubMed ID: 7761574 [Abstract] [Full Text] [Related] Page: [Next] [New Search]