These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 10071212

  • 1. Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes.
    Noma K, Ohtsubo E, Ohtsubo H.
    Mol Gen Genet; 1999 Feb; 261(1):71-9. PubMed ID: 10071212
    [Abstract] [Full Text] [Related]

  • 2. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom.
    Kumekawa N, Ohtsubo E, Ohtsubo H.
    Genes Genet Syst; 1999 Dec; 74(6):299-307. PubMed ID: 10791026
    [Abstract] [Full Text] [Related]

  • 3. Identification and characterization of novel retrotransposons of the gypsy type in rice.
    Kumekawa N, Ohtsubo H, Horiuchi T, Ohtsubo E.
    Mol Gen Genet; 1999 Jan; 260(6):593-602. PubMed ID: 9928939
    [Abstract] [Full Text] [Related]

  • 4. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L, McCarthy EM, Ganko EW, McDonald JF.
    BMC Genomics; 2004 Mar 02; 5(1):18. PubMed ID: 15040813
    [Abstract] [Full Text] [Related]

  • 5. A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes.
    Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H.
    Mol Genet Genomics; 2001 May 02; 265(3):480-8. PubMed ID: 11405631
    [Abstract] [Full Text] [Related]

  • 6. RIRE1, a retrotransposon from wild rice Oryza australiensis.
    Noma K, Nakajima R, Ohtsubo H, Ohtsubo E.
    Genes Genet Syst; 1997 Jun 02; 72(3):131-40. PubMed ID: 9339541
    [Abstract] [Full Text] [Related]

  • 7. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice.
    Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O.
    Genome Res; 2006 Oct 02; 16(10):1262-9. PubMed ID: 16963705
    [Abstract] [Full Text] [Related]

  • 8. Diversity in the integrase coding domain of a gypsy-like retrotransposon among wild relatives of rice in the Oryza officinalis complex.
    Shcherban AB, Vaughan DA, Tomooka N, Kaga A.
    Genetica; 2000 Oct 02; 110(1):43-53. PubMed ID: 11519874
    [Abstract] [Full Text] [Related]

  • 9. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice.
    Ma J, Devos KM, Bennetzen JL.
    Genome Res; 2004 May 02; 14(5):860-9. PubMed ID: 15078861
    [Abstract] [Full Text] [Related]

  • 10. LINEs and gypsy-like retrotransposons in Hordeum species.
    Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS.
    Plant Mol Biol; 2002 May 02; 49(1):1-14. PubMed ID: 12008894
    [Abstract] [Full Text] [Related]

  • 11. Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations.
    Wang S, Zhang Q, Maughan PJ, Saghai Maroof MA.
    Plant Mol Biol; 1997 Apr 02; 33(6):1051-8. PubMed ID: 9154986
    [Abstract] [Full Text] [Related]

  • 12. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM, Liu J, Lizhi G, McDonald JF.
    Genome Biol; 2002 Sep 13; 3(10):RESEARCH0053. PubMed ID: 12372141
    [Abstract] [Full Text] [Related]

  • 13. Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis.
    Tian Z, Yu Y, Lin F, Yu Y, Sanmiguel PJ, Wing RA, McCouch SR, Ma J, Jackson SA.
    BMC Genomics; 2011 Mar 08; 12():142. PubMed ID: 21385395
    [Abstract] [Full Text] [Related]

  • 14. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms.
    Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T.
    Plant Mol Biol; 1998 Apr 08; 36(6):821-31. PubMed ID: 9520275
    [Abstract] [Full Text] [Related]

  • 15. Identification and characterization of two tandem repeat sequences (TrsB and TrsC) and a retrotransposon (RIRE1) as genome-general sequences in rice.
    Nakajima R, Noma K, Ohtsubo H, Ohtsubo E.
    Genes Genet Syst; 1996 Dec 08; 71(6):373-82. PubMed ID: 9080684
    [Abstract] [Full Text] [Related]

  • 16. RIRE2, a novel gypsy-type retrotransposon from rice.
    Ohtsubo H, Kumekawa N, Ohtsubo E.
    Genes Genet Syst; 1999 Jun 08; 74(3):83-91. PubMed ID: 10586517
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters.
    Xu Z, Rafi S, Ramakrishna W.
    Genome; 2011 Aug 08; 54(8):629-38. PubMed ID: 21823826
    [Abstract] [Full Text] [Related]

  • 19. Identification of an active LTR retrotransposon in rice.
    Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O.
    Plant J; 2009 Jun 08; 58(5):754-65. PubMed ID: 19187041
    [Abstract] [Full Text] [Related]

  • 20. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects.
    Kubo Y, Okazaki S, Anzai T, Fujiwara H.
    Mol Biol Evol; 2001 May 08; 18(5):848-57. PubMed ID: 11319268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.