These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


634 related items for PubMed ID: 10072678

  • 41. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D, Gohlke H.
    J Chem Inf Model; 2009 Oct; 49(10):2260-71. PubMed ID: 19795907
    [Abstract] [Full Text] [Related]

  • 42. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG.
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [Abstract] [Full Text] [Related]

  • 43. Improved protein-ligand docking using GOLD.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD.
    Proteins; 2003 Sep 01; 52(4):609-23. PubMed ID: 12910460
    [Abstract] [Full Text] [Related]

  • 44. Distance dependent scoring function for describing protein-ligand intermolecular interactions.
    Artemenko N.
    J Chem Inf Model; 2008 Mar 01; 48(3):569-74. PubMed ID: 18290639
    [Abstract] [Full Text] [Related]

  • 45. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T, Jayaram B.
    Proteins; 2007 Jun 01; 67(4):1167-78. PubMed ID: 17380508
    [Abstract] [Full Text] [Related]

  • 46. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY, Chu ZT, Tao H, Warshel A.
    Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821
    [Abstract] [Full Text] [Related]

  • 47. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO.
    J Chem Inf Model; 2007 Jun 01; 47(1):122-33. PubMed ID: 17238257
    [Abstract] [Full Text] [Related]

  • 48. Bootstrap-based consensus scoring method for protein-ligand docking.
    Fukunishi H, Teramoto R, Takada T, Shimada J.
    J Chem Inf Model; 2008 May 01; 48(5):988-96. PubMed ID: 18426197
    [Abstract] [Full Text] [Related]

  • 49. Development and evaluation of a generic evolutionary method for protein-ligand docking.
    Yang JM.
    J Comput Chem; 2004 Apr 30; 25(6):843-57. PubMed ID: 15011256
    [Abstract] [Full Text] [Related]

  • 50. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z, Chuaqui C, Singh J.
    J Med Chem; 2004 Jan 15; 47(2):337-44. PubMed ID: 14711306
    [Abstract] [Full Text] [Related]

  • 51. Supervised consensus scoring for docking and virtual screening.
    Teramoto R, Fukunishi H.
    J Chem Inf Model; 2007 Jan 15; 47(2):526-34. PubMed ID: 17295466
    [Abstract] [Full Text] [Related]

  • 52. Native atom types for knowledge-based potentials: application to binding energy prediction.
    Dominy BN, Shakhnovich EI.
    J Med Chem; 2004 Aug 26; 47(18):4538-58. PubMed ID: 15317465
    [Abstract] [Full Text] [Related]

  • 53. Comparative binding energy analysis for binding affinity and target selectivity prediction.
    Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC.
    Proteins; 2010 Jan 26; 78(1):135-53. PubMed ID: 19768680
    [Abstract] [Full Text] [Related]

  • 54. Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions.
    Ruvinsky AM.
    J Comput Chem; 2007 Jun 26; 28(8):1364-72. PubMed ID: 17342720
    [Abstract] [Full Text] [Related]

  • 55. A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase.
    Steinbrecher T, Case DA, Labahn A.
    J Med Chem; 2006 Mar 23; 49(6):1837-44. PubMed ID: 16539369
    [Abstract] [Full Text] [Related]

  • 56. Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions.
    Mpamhanga CP, Chen B, McLay IM, Willett P.
    J Chem Inf Model; 2006 Mar 23; 46(2):686-98. PubMed ID: 16562999
    [Abstract] [Full Text] [Related]

  • 57. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC, Humblet C, Joseph-McCarthy D.
    J Chem Inf Model; 2008 May 23; 48(5):1081-91. PubMed ID: 18465849
    [Abstract] [Full Text] [Related]

  • 58. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD, Jewsbury PJ, Essex JW.
    J Comput Chem; 2003 Oct 23; 24(13):1637-56. PubMed ID: 12926007
    [Abstract] [Full Text] [Related]

  • 59. Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions.
    Søndergaard CR, Garrett AE, Carstensen T, Pollastri G, Nielsen JE.
    J Med Chem; 2009 Sep 24; 52(18):5673-84. PubMed ID: 19711919
    [Abstract] [Full Text] [Related]

  • 60. Variation of protein binding cavity volume and ligand volume in protein-ligand complexes.
    Saranya N, Selvaraj S.
    Bioorg Med Chem Lett; 2009 Oct 01; 19(19):5769-72. PubMed ID: 19706358
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 32.