These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 10074338
1. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. diSioudi B, Grimsley JK, Lai K, Wild JR. Biochemistry; 1999 Mar 09; 38(10):2866-72. PubMed ID: 10074338 [Abstract] [Full Text] [Related]
2. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Lai K, Stolowich NJ, Wild JR. Arch Biochem Biophys; 1995 Apr 01; 318(1):59-64. PubMed ID: 7726573 [Abstract] [Full Text] [Related]
3. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB, Raushel FM. Biochemistry; 1996 Aug 20; 35(33):10904-12. PubMed ID: 8718883 [Abstract] [Full Text] [Related]
4. Structural and mutational studies of organophosphorus hydrolase reveal a cryptic and functional allosteric-binding site. Grimsley JK, Calamini B, Wild JR, Mesecar AD. Arch Biochem Biophys; 2005 Oct 15; 442(2):169-79. PubMed ID: 16188223 [Abstract] [Full Text] [Related]
5. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Aubert SD, Li Y, Raushel FM. Biochemistry; 2004 May 18; 43(19):5707-15. PubMed ID: 15134445 [Abstract] [Full Text] [Related]
6. Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Gopal S, Rastogi V, Ashman W, Mulbry W. Biochem Biophys Res Commun; 2000 Dec 20; 279(2):516-9. PubMed ID: 11118318 [Abstract] [Full Text] [Related]
7. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J, Stieglitz KA, Kantrowitz ER. Biochemistry; 2005 Jun 14; 44(23):8378-86. PubMed ID: 15938627 [Abstract] [Full Text] [Related]
8. Direct detection of stereospecific soman hydrolysis by wild-type human serum paraoxonase. Yeung DT, Smith JR, Sweeney RE, Lenz DE, Cerasoli DM. FEBS J; 2007 Mar 14; 274(5):1183-91. PubMed ID: 17286579 [Abstract] [Full Text] [Related]
9. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS, Steffens JJ, Wawrzak Z, Schwartz RS, Lundqvist T, Jordan DB. Biochemistry; 1999 May 11; 38(19):6012-24. PubMed ID: 10320327 [Abstract] [Full Text] [Related]
10. Conformational variability of organophosphorus hydrolase upon soman and paraoxon binding. Gomes DE, Lins RD, Pascutti PG, Lei C, Soares TA. J Phys Chem B; 2011 Dec 29; 115(51):15389-98. PubMed ID: 22098575 [Abstract] [Full Text] [Related]
11. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase. Millard CB, Lockridge O, Broomfield CA. Biochemistry; 1998 Jan 06; 37(1):237-47. PubMed ID: 9425044 [Abstract] [Full Text] [Related]
12. Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Mee-Hie Cho C, Mulchandani A, Chen W. Protein Eng Des Sel; 2006 Mar 06; 19(3):99-105. PubMed ID: 16423845 [Abstract] [Full Text] [Related]
13. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM. J Am Chem Soc; 2003 Jul 30; 125(30):8990-1. PubMed ID: 15369336 [Abstract] [Full Text] [Related]
14. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site. Antikainen NM, Hergenrother PJ, Harris MM, Corbett W, Martin SF. Biochemistry; 2003 Feb 18; 42(6):1603-10. PubMed ID: 12578373 [Abstract] [Full Text] [Related]
15. Perturbations to the active site of phosphotriesterase. Kuo JM, Chae MY, Raushel FM. Biochemistry; 1997 Feb 25; 36(8):1982-8. PubMed ID: 9047295 [Abstract] [Full Text] [Related]
16. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Chen-Goodspeed M, Sogorb MA, Wu F, Raushel FM. Biochemistry; 2001 Feb 06; 40(5):1332-9. PubMed ID: 11170460 [Abstract] [Full Text] [Related]
17. Rational design of organophosphorus hydrolase for altered substrate specificities. Di Sioudi BD, Miller CE, Lai K, Grimsley JK, Wild JR. Chem Biol Interact; 1999 May 14; 119-120():211-23. PubMed ID: 10421455 [Abstract] [Full Text] [Related]
18. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. Lockridge O, Blong RM, Masson P, Froment MT, Millard CB, Broomfield CA. Biochemistry; 1997 Jan 28; 36(4):786-95. PubMed ID: 9020776 [Abstract] [Full Text] [Related]
19. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor. Matsunami H, Okajima T, Hirota S, Yamaguchi H, Hori H, Kuroda S, Tanizawa K. Biochemistry; 2004 Mar 02; 43(8):2178-87. PubMed ID: 14979714 [Abstract] [Full Text] [Related]
20. Identification of residues essential for human paraoxonase (PON1) arylesterase/organophosphatase activities. Josse D, Xie W, Renault F, Rochu D, Schopfer LM, Masson P, Lockridge O. Biochemistry; 1999 Mar 02; 38(9):2816-25. PubMed ID: 10052953 [Abstract] [Full Text] [Related] Page: [Next] [New Search]