These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
609 related items for PubMed ID: 10075937
1. Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. EMBO J; 1999 Mar 15; 18(6):1673-88. PubMed ID: 10075937 [Abstract] [Full Text] [Related]
2. Conserved sequences in the beta subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2gamma. Thompson GM, Pacheco E, Melo EO, Castilho BA. Biochem J; 2000 May 01; 347 Pt 3(Pt 3):703-9. PubMed ID: 10769173 [Abstract] [Full Text] [Related]
3. Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon. Alone PV, Dever TE. J Biol Chem; 2006 May 05; 281(18):12636-44. PubMed ID: 16522633 [Abstract] [Full Text] [Related]
4. The binding mechanism of eIF2β with its partner proteins, eIF5 and eIF2Bε. Gai Z, Kitagawa Y, Tanaka Y, Shimizu N, Komoda K, Tanaka I, Yao M. Biochem Biophys Res Commun; 2012 Jul 06; 423(3):515-9. PubMed ID: 22683627 [Abstract] [Full Text] [Related]
5. Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. Das S, Maitra U. Prog Nucleic Acid Res Mol Biol; 2001 Jul 06; 70():207-31. PubMed ID: 11642363 [Abstract] [Full Text] [Related]
6. Identification of domains and residues within the epsilon subunit of eukaryotic translation initiation factor 2B (eIF2Bepsilon) required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation. Gomez E, Pavitt GD. Mol Cell Biol; 2000 Jun 06; 20(11):3965-76. PubMed ID: 10805739 [Abstract] [Full Text] [Related]
7. Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation. Mohammad-Qureshi SS, Jennings MD, Pavitt GD. Biochem Soc Trans; 2008 Aug 06; 36(Pt 4):658-64. PubMed ID: 18631136 [Abstract] [Full Text] [Related]
8. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Asano K, Clayton J, Shalev A, Hinnebusch AG. Genes Dev; 2000 Oct 01; 14(19):2534-46. PubMed ID: 11018020 [Abstract] [Full Text] [Related]
9. Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Das S, Maitra U. Mol Cell Biol; 2000 Jun 01; 20(11):3942-50. PubMed ID: 10805737 [Abstract] [Full Text] [Related]
10. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. Asano K, Shalev A, Phan L, Nielsen K, Clayton J, Valásek L, Donahue TF, Hinnebusch AG. EMBO J; 2001 May 01; 20(9):2326-37. PubMed ID: 11331597 [Abstract] [Full Text] [Related]
11. eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Jennings MD, Pavitt GD. Nature; 2010 May 20; 465(7296):378-81. PubMed ID: 20485439 [Abstract] [Full Text] [Related]
12. The joining of ribosomal subunits in eukaryotes requires eIF5B. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU. Nature; 2000 Jan 20; 403(6767):332-5. PubMed ID: 10659855 [Abstract] [Full Text] [Related]
13. An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. Singh CR, Lee B, Udagawa T, Mohammad-Qureshi SS, Yamamoto Y, Pavitt GD, Asano K. EMBO J; 2006 Oct 04; 25(19):4537-46. PubMed ID: 16990799 [Abstract] [Full Text] [Related]
14. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Valásek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG. Mol Cell Biol; 2004 Nov 04; 24(21):9437-55. PubMed ID: 15485912 [Abstract] [Full Text] [Related]
15. Study of translational control of eukaryotic gene expression using yeast. Hinnebusch AG, Asano K, Olsen DS, Phan L, Nielsen KH, Valásek L. Ann N Y Acad Sci; 2004 Dec 04; 1038():60-74. PubMed ID: 15838098 [Abstract] [Full Text] [Related]
16. Mechanisms of translational regulation by a human eIF5-mimic protein. Singh CR, Watanabe R, Zhou D, Jennings MD, Fukao A, Lee B, Ikeda Y, Chiorini JA, Campbell SG, Ashe MP, Fujiwara T, Wek RC, Pavitt GD, Asano K. Nucleic Acids Res; 2011 Oct 04; 39(19):8314-28. PubMed ID: 21745818 [Abstract] [Full Text] [Related]
17. Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor eIF-2B subunits revealed by analysis of conserved sequence motifs. Koonin EV. Protein Sci; 1995 Aug 04; 4(8):1608-17. PubMed ID: 8520487 [Abstract] [Full Text] [Related]
18. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. Das S, Maiti T, Das K, Maitra U. J Biol Chem; 1997 Dec 12; 272(50):31712-8. PubMed ID: 9395514 [Abstract] [Full Text] [Related]
19. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding. Valásek L, Phan L, Schoenfeld LW, Valásková V, Hinnebusch AG. EMBO J; 2001 Feb 15; 20(4):891-904. PubMed ID: 11179233 [Abstract] [Full Text] [Related]
20. The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5. Bieniossek C, Schütz P, Bumann M, Limacher A, Uson I, Baumann U. J Mol Biol; 2006 Jul 07; 360(2):457-65. PubMed ID: 16781736 [Abstract] [Full Text] [Related] Page: [Next] [New Search]