These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 10077830

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
    Seibold GM, Wurst M, Eikmanns BJ.
    Microbiology (Reading); 2009 Feb; 155(Pt 2):347-358. PubMed ID: 19202084
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW, Golding GB, Crerar MM.
    J Mol Biol; 1993 Dec 05; 234(3):700-21. PubMed ID: 8254668
    [Abstract] [Full Text] [Related]

  • 9. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase.
    Watson KA, Schinzel R, Palm D, Johnson LN.
    EMBO J; 1997 Jan 02; 16(1):1-14. PubMed ID: 9009262
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Thermostable alpha-glucan phosphorylases: characteristics and industrial applications.
    Ubiparip Z, Beerens K, Franceus J, Vercauteren R, Desmet T.
    Appl Microbiol Biotechnol; 2018 Oct 02; 102(19):8187-8202. PubMed ID: 30043268
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Growth dependence of alpha-glucan phosphorylase activity in Thermus thermophilus.
    Boeck B, Schinzel R.
    Res Microbiol; 1998 Mar 02; 149(3):171-6. PubMed ID: 9766219
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The action pattern of amylomaltase from Escherichia coli.
    Palmer TN, Ryman BE, Whelan WJ.
    Eur J Biochem; 1976 Oct 01; 69(1):105-15. PubMed ID: 791642
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Comparative biochemistry of alpha-glucan-utilization in Pseudomonas amyloderamosa and Pseudomonas saccharophila: physiological significance of variations in the pathway.
    Norrman J, Wöber G.
    Arch Microbiol; 1975 Mar 10; 102(3):253-60. PubMed ID: 239655
    [Abstract] [Full Text] [Related]

  • 18. Analysis of genes involved in glycogen degradation in Escherichia coli.
    Strydom L, Jewell J, Meier MA, George GM, Pfister B, Zeeman S, Kossmann J, Lloyd JR.
    FEMS Microbiol Lett; 2017 Feb 01; 364(3):. PubMed ID: 28119371
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors.
    Pylkkänen R, Maaheimo H, Liljeström V, Mohammadi P, Penttilä M.
    Biomacromolecules; 2024 Aug 12; 25(8):5048-5057. PubMed ID: 39025475
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.