These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 10078703

  • 1. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets.
    Undar A, Andropoulos DB, Fraser CD.
    Anesthesiology; 1999 Mar; 90(3):926-7. PubMed ID: 10078703
    [No Abstract] [Full Text] [Related]

  • 2. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets.
    Kurth CD, O'Rourke MM, O'Hara IB.
    Anesthesiology; 1998 Jul; 89(1):110-8. PubMed ID: 9667301
    [Abstract] [Full Text] [Related]

  • 3. Effects of pH management during deep hypothermic bypass on cerebral oxygenation: alpha-stat versus pH-stat.
    Li ZJ, Yin XM, Ye J.
    J Zhejiang Univ Sci; 2004 Oct; 5(10):1290-7. PubMed ID: 15362203
    [Abstract] [Full Text] [Related]

  • 4. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat.
    Duebener LF, Hagino I, Sakamoto T, Mime LB, Stamm C, Zurakowski D, Schäfers HJ, Jonas RA.
    Circulation; 2002 Sep 24; 106(12 Suppl 1):I103-8. PubMed ID: 12354717
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effect of deep hypothermic circulatory arrest followed by low-flow cardiopulmonary bypass on brain metabolism in newborn piglets: comparison of pH-stat and α-stat management.
    Pirzadeh A, Schears G, Pastuszko P, Liu H, Kubin J, Reade E, Mendoza-Paredes A, Greeley W, Nadkarni V, Wilson DF, Pastuszko A.
    Pediatr Crit Care Med; 2011 Mar 24; 12(2):e79-86. PubMed ID: 20601925
    [Abstract] [Full Text] [Related]

  • 7. pH-stat cooling improves cerebral metabolic recovery after circulatory arrest in a piglet model of aortopulmonary collaterals.
    Kirshbom PM, Skaryak LR, DiBernardo LR, Kern FH, Greeley WJ, Gaynor JW, Ungerleider RM.
    J Thorac Cardiovasc Surg; 1996 Jan 24; 111(1):147-55; discussion 156-7. PubMed ID: 8551760
    [Abstract] [Full Text] [Related]

  • 8. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets.
    Schultz S, Antoni D, Shears G, Markowitz S, Pastuszko P, Greeley W, Wilson DF, Pastuszko A.
    J Thorac Cardiovasc Surg; 2006 Oct 24; 132(4):839-44. PubMed ID: 17000295
    [Abstract] [Full Text] [Related]

  • 9. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring.
    Sakamoto T, Kurosawa H, Shin'oka T, Aoki M, Isomatsu Y.
    J Thorac Cardiovasc Surg; 2004 Jan 24; 127(1):12-9. PubMed ID: 14752407
    [Abstract] [Full Text] [Related]

  • 10. Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest.
    Amir G, Ramamoorthy C, Riemer RK, Davis CR, Hanley FL, Reddy VM.
    J Thorac Cardiovasc Surg; 2006 Dec 24; 132(6):1307-13. PubMed ID: 17140947
    [Abstract] [Full Text] [Related]

  • 11. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ.
    J Thorac Cardiovasc Surg; 2003 Mar 24; 125(3):625-32. PubMed ID: 12658205
    [Abstract] [Full Text] [Related]

  • 12. Effects of pH on brain energetics after hypothermic circulatory arrest.
    Aoki M, Nomura F, Stromski ME, Tsuji MK, Fackler JC, Hickey PR, Holtzman DH, Jonas RA.
    Ann Thorac Surg; 1993 May 24; 55(5):1093-103. PubMed ID: 8494416
    [Abstract] [Full Text] [Related]

  • 13. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass.
    Kawata H, Fackler JC, Aoki M, Tsuji MK, Sawatari K, Offutt M, Hickey PR, Holtzman D, Jonas RA.
    J Thorac Cardiovasc Surg; 1993 Oct 24; 106(4):671-85. PubMed ID: 8412262
    [Abstract] [Full Text] [Related]

  • 14. Thromboxane A2-receptor blockade improves cerebral protection for deep hypothermic circulatory arrest.
    Tsui SS, Kirshbom PM, Davies MJ, Jacobs MT, Kern FH, Gaynor JW, Greeley WJ, Ungerleider RM.
    Eur J Cardiothorac Surg; 1997 Aug 24; 12(2):228-35. PubMed ID: 9288512
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Cerebral blood flow during cardiopulmonary bypass: influence of temperature and pH management strategy.
    Cheng W, Hartmann JF, Cameron DE, Griffiths EM, Kirsch JR, Traystman RJ.
    Ann Thorac Surg; 1995 Apr 24; 59(4):880-6. PubMed ID: 7695412
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Abdul-Khaliq H, Troitzsch D.
    Thorac Cardiovasc Surg; 2003 Feb 24; 51(1):52-3. PubMed ID: 12587092
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.