These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
323 related items for PubMed ID: 10082573
1. Hypersensitive site 2 specifies a unique function within the human beta-globin locus control region to stimulate globin gene transcription. Bungert J, Tanimoto K, Patel S, Liu Q, Fear M, Engel JD. Mol Cell Biol; 1999 Apr; 19(4):3062-72. PubMed ID: 10082573 [Abstract] [Full Text] [Related]
2. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR. Tanimoto K, Liu Q, Bungert J, Engel JD. Nucleic Acids Res; 1999 Aug 01; 27(15):3130-7. PubMed ID: 10454609 [Abstract] [Full Text] [Related]
3. Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes. Hu X, Bulger M, Bender MA, Fields J, Groudine M, Fiering S. Blood; 2006 Jan 15; 107(2):821-6. PubMed ID: 16189270 [Abstract] [Full Text] [Related]
4. Effects of human locus control region elements HS2 and HS3 on human beta-globin gene expression in transgenic mouse. Jia CP, Huang SZ, Yan JB, Xiao YP, Ren ZR, Zeng YT. Blood Cells Mol Dis; 2003 Jan 15; 31(3):360-9. PubMed ID: 14636653 [Abstract] [Full Text] [Related]
5. Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Bungert J, Davé U, Lim KC, Lieuw KH, Shavit JA, Liu Q, Engel JD. Genes Dev; 1995 Dec 15; 9(24):3083-96. PubMed ID: 8543153 [Abstract] [Full Text] [Related]
6. Cooperativeness of the higher chromatin structure of the beta-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR. Fang X, Xiang P, Yin W, Stamatoyannopoulos G, Li Q. J Mol Biol; 2007 Jan 05; 365(1):31-7. PubMed ID: 17056066 [Abstract] [Full Text] [Related]
7. Reconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly. Leach KM, Nightingale K, Igarashi K, Levings PP, Engel JD, Becker PB, Bungert J. Mol Cell Biol; 2001 Apr 05; 21(8):2629-40. PubMed ID: 11283243 [Abstract] [Full Text] [Related]
8. Individual LCR hypersensitive sites cooperate to generate an open chromatin domain spanning the human beta-globin locus. Li G, Lim KC, Engel JD, Bungert J. Genes Cells; 1998 Jul 05; 3(7):415-29. PubMed ID: 9753424 [Abstract] [Full Text] [Related]
9. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture. Fang X, Sun J, Xiang P, Yu M, Navas PA, Peterson KR, Stamatoyannopoulos G, Li Q. Mol Cell Biol; 2005 Aug 05; 25(16):7033-41. PubMed ID: 16055715 [Abstract] [Full Text] [Related]
10. beta-YAC transgenic mice for studying LCR function. Peterson KR, Navas PA, Stamatoyannopoulos G. Ann N Y Acad Sci; 1998 Jun 30; 850():28-37. PubMed ID: 9668524 [Abstract] [Full Text] [Related]
11. Regulated expression of the human beta globin gene in transgenic mice requires an upstream globin or nonglobin promoter. Anderson KP, Lloyd JA, Ponce E, Crable SC, Neumann JC, Lingrel JB. Mol Biol Cell; 1993 Oct 30; 4(10):1077-85. PubMed ID: 8298193 [Abstract] [Full Text] [Related]
12. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice. Shimotsuma M, Okamura E, Matsuzaki H, Fukamizu A, Tanimoto K. J Biol Chem; 2010 May 07; 285(19):14495-503. PubMed ID: 20231293 [Abstract] [Full Text] [Related]
13. Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G. Hum Mol Genet; 2003 Nov 15; 12(22):2941-8. PubMed ID: 14506128 [Abstract] [Full Text] [Related]
14. Structural and functional cross-talk between a distant enhancer and the epsilon-globin gene promoter shows interdependence of the two elements in chromatin. McDowell JC, Dean A. Mol Cell Biol; 1999 Nov 15; 19(11):7600-9. PubMed ID: 10523648 [Abstract] [Full Text] [Related]
15. Differential requirement of a distal regulatory region for pre-initiation complex formation at globin gene promoters. Ross J, Bottardi S, Bourgoin V, Wollenschlaeger A, Drobetsky E, Trudel M, Milot E. Nucleic Acids Res; 2009 Sep 15; 37(16):5295-308. PubMed ID: 19567738 [Abstract] [Full Text] [Related]
16. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites. Kim J, Kang J, Kim YW, Kim A. FASEB J; 2021 Jun 15; 35(6):e21669. PubMed ID: 34033138 [Abstract] [Full Text] [Related]
17. A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human beta-globin locus control region. Ellis J, Tan-Un KC, Harper A, Michalovich D, Yannoutsos N, Philipsen S, Grosveld F. EMBO J; 1996 Feb 01; 15(3):562-8. PubMed ID: 8599939 [Abstract] [Full Text] [Related]
18. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression. Nemeth MJ, Bodine DM, Garrett LJ, Lowrey CH. Blood Cells Mol Dis; 2001 Feb 01; 27(4):767-80. PubMed ID: 11778661 [Abstract] [Full Text] [Related]
19. The interaction between the human beta-globin locus control region and nuclear matrix. Zhang SB, Qian RL. Cell Res; 2002 Dec 01; 12(5-6):411-6. PubMed ID: 12528900 [Abstract] [Full Text] [Related]
20. Juxtaposition of the HPFH2 enhancer is not sufficient to reactivate the gamma-globin gene in adult erythropoiesis. Xiang P, Han H, Barkess G, Olave I, Fang X, Yin W, Stamatoyannopoulos G, Li Q. Hum Mol Genet; 2005 Oct 15; 14(20):3047-56. PubMed ID: 16155112 [Abstract] [Full Text] [Related] Page: [Next] [New Search]