These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus. Reichenbecher W, Philipp B, Suter MJ, Schink B. Arch Microbiol; 2000 Mar; 173(3):206-12. PubMed ID: 10763753 [Abstract] [Full Text] [Related]
23. [INHIBITION OF CATECHOL O-METHYL TRANSFERASE; ITS ROLE IN THE MECHANISMS OF TOXIC ACTION]. TRUHAUT R, ASSICOT M, BOHUON C. Ann Biol Clin (Paris); 1964 Mar; 22():1047-54. PubMed ID: 14232089 [No Abstract] [Full Text] [Related]
25. [Purification and properties of peroxidase from tea leaves]. Pruidze GN, Grigorashvili GZ, Chachus LSh, Tokhadze MV. Biokhimiia; 1976 Oct; 41(10):1819-28. PubMed ID: 15639 [Abstract] [Full Text] [Related]
26. Conversion to purpurogallin, a key step in the mechanism of the potent xanthine oxidase inhibitory activity of pyrogallol. Honda S, Fukuyama Y, Nishiwaki H, Masuda A, Masuda T. Free Radic Biol Med; 2017 May; 106():228-235. PubMed ID: 28223196 [Abstract] [Full Text] [Related]
27. [Formation of pyrogallol ether during oxidative destruction of oak lignin with air oxygen]. Bezhuashvili MG, Eradze NN, Mudzhiri LA. Prikl Biokhim Mikrobiol; 2000 May; 36(1):41-3. PubMed ID: 10752083 [Abstract] [Full Text] [Related]
31. Electrochemical oxidation of pyrogallol: formation and characterization of long-lived oxygen radicals and application to assess the radical scavenging abilities of antioxidants. Mu S, Chen C. J Phys Chem B; 2012 Oct 18; 116(41):12567-73. PubMed ID: 23009162 [Abstract] [Full Text] [Related]
34. Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate. Li Y, Tanaka T, Kouno I. Phytochemistry; 2007 Apr 18; 68(7):1081-8. PubMed ID: 17320123 [Abstract] [Full Text] [Related]
35. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Muñoz-Muñoz JL, García-Molina F, García-Ruiz PA, Molina-Alarcón M, Tudela J, García-Cánovas F, Rodríguez-López JN. Biochem J; 2008 Dec 15; 416(3):431-40. PubMed ID: 18647136 [Abstract] [Full Text] [Related]
36. The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Valegård K, Terwisscha van Scheltinga AC, Dubus A, Ranghino G, Oster LM, Hajdu J, Andersson I. Nat Struct Mol Biol; 2004 Jan 15; 11(1):95-101. PubMed ID: 14718929 [Abstract] [Full Text] [Related]