These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 10087931

  • 1. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells.
    Johnston M.
    Trends Genet; 1999 Jan; 15(1):29-33. PubMed ID: 10087931
    [Abstract] [Full Text] [Related]

  • 2. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae.
    Hu Z, Nehlin JO, Ronne H, Michels CA.
    Curr Genet; 1995 Aug; 28(3):258-66. PubMed ID: 8529272
    [Abstract] [Full Text] [Related]

  • 3. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae.
    Kim JH, Brachet V, Moriya H, Johnston M.
    Eukaryot Cell; 2006 Jan; 5(1):167-73. PubMed ID: 16400179
    [Abstract] [Full Text] [Related]

  • 4. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae.
    Johnston M, Kim JH.
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):247-52. PubMed ID: 15667318
    [Abstract] [Full Text] [Related]

  • 5. A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity.
    Medintz I, Wang X, Hradek T, Michels CA.
    Biochemistry; 2000 Apr 18; 39(15):4518-26. PubMed ID: 10758001
    [Abstract] [Full Text] [Related]

  • 6. Regulation of AAC isogenes encoding mitochondrial ADP/ATP translocator in the yeast Saccharomyces cerevisiae.
    Sabová L, Gavurníková G, Kolarov J.
    Folia Microbiol (Praha); 1996 Apr 18; 41(1):124-6. PubMed ID: 9090851
    [No Abstract] [Full Text] [Related]

  • 7. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA, Lambrechts MG, Pretorius IS.
    Crit Rev Biochem Mol Biol; 1997 Apr 18; 32(5):405-35. PubMed ID: 9383611
    [Abstract] [Full Text] [Related]

  • 8. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae.
    Busti S, Coccetti P, Alberghina L, Vanoni M.
    Sensors (Basel); 2010 Apr 18; 10(6):6195-240. PubMed ID: 22219709
    [Abstract] [Full Text] [Related]

  • 9. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae.
    Rødkaer SV, Faergeman NJ.
    FEMS Yeast Res; 2014 Aug 18; 14(5):683-96. PubMed ID: 24738657
    [Abstract] [Full Text] [Related]

  • 10. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations.
    Yin Z, Hatton L, Brown AJ.
    Mol Microbiol; 2000 Feb 18; 35(3):553-65. PubMed ID: 10672178
    [Abstract] [Full Text] [Related]

  • 11. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach.
    Teixeira MC, Raposo LR, Palma M, Sá-Correia I.
    OMICS; 2010 Apr 18; 14(2):201-10. PubMed ID: 20210661
    [Abstract] [Full Text] [Related]

  • 12. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA, Kim JH, Johnston M.
    Genetics; 2005 Feb 18; 169(2):583-94. PubMed ID: 15489524
    [Abstract] [Full Text] [Related]

  • 13. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö, Nielsen J.
    FEMS Yeast Res; 2015 Sep 18; 15(6):. PubMed ID: 26205245
    [Abstract] [Full Text] [Related]

  • 14. Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharomyces cerevisiae.
    Kartasheva NN, Kuchin SV, Benevolensky SV.
    Yeast; 1996 Oct 18; 12(13):1297-300. PubMed ID: 8923734
    [Abstract] [Full Text] [Related]

  • 15. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae.
    Chomvong K, Benjamin DI, Nomura DK, Cate JHD.
    mBio; 2017 Aug 08; 8(4):. PubMed ID: 28790206
    [Abstract] [Full Text] [Related]

  • 16. The early steps of glucose signalling in yeast.
    Gancedo JM.
    FEMS Microbiol Rev; 2008 Jul 08; 32(4):673-704. PubMed ID: 18559076
    [Abstract] [Full Text] [Related]

  • 17. Glucose signaling controls the transcription of retrotransposon Ty2-917 in Saccharomyces cerevisiae.
    Türkel S, Arik E.
    Virus Genes; 2007 Dec 08; 35(3):713-7. PubMed ID: 17682934
    [Abstract] [Full Text] [Related]

  • 18. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C, Haack MB, Olsson L.
    Appl Microbiol Biotechnol; 2004 Feb 08; 63(5):578-83. PubMed ID: 12925863
    [Abstract] [Full Text] [Related]

  • 19. Multi-level response of the yeast genome to glucose.
    Geladé R, Van de Velde S, Van Dijck P, Thevelein JM.
    Genome Biol; 2003 Feb 08; 4(11):233. PubMed ID: 14611650
    [Abstract] [Full Text] [Related]

  • 20. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT, Culotta VC.
    J Mol Biol; 2002 Apr 26; 318(2):251-60. PubMed ID: 12051835
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.