These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 10093026

  • 1. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT, Morgenroth DC.
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [Abstract] [Full Text] [Related]

  • 2. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses.
    Farley CT, Houdijk HH, Van Strien C, Louie M.
    J Appl Physiol (1985); 1998 Sep; 85(3):1044-55. PubMed ID: 9729582
    [Abstract] [Full Text] [Related]

  • 3. Leg stiffness adjustment during hopping at different intensities and frequencies.
    Mrdakovic V, Ilic D, Vulovic R, Matic M, Jankovic N, Filipovic N.
    Acta Bioeng Biomech; 2014 Sep; 16(3):69-76. PubMed ID: 25308379
    [Abstract] [Full Text] [Related]

  • 4. Determinant of leg stiffness during hopping is frequency-dependent.
    Hobara H, Inoue K, Omuro K, Muraoka T, Kanosue K.
    Eur J Appl Physiol; 2011 Sep; 111(9):2195-201. PubMed ID: 21318314
    [Abstract] [Full Text] [Related]

  • 5. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP, Bohra ZA, Lukos JR, Kinnaird CR.
    J Appl Physiol (1985); 2006 Jan; 100(1):163-70. PubMed ID: 16179395
    [Abstract] [Full Text] [Related]

  • 6. Knee stiffness is a major determinant of leg stiffness during maximal hopping.
    Hobara H, Muraoka T, Omuro K, Gomi K, Sakamoto M, Inoue K, Kanosue K.
    J Biomech; 2009 Aug 07; 42(11):1768-71. PubMed ID: 19486983
    [Abstract] [Full Text] [Related]

  • 7. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP, Grabowski AM.
    J Appl Physiol (1985); 2019 Aug 01; 127(2):520-530. PubMed ID: 31219770
    [Abstract] [Full Text] [Related]

  • 8. Leg stiffness adjustment for a range of hopping frequencies in humans.
    Hobara H, Inoue K, Muraoka T, Omuro K, Sakamoto M, Kanosue K.
    J Biomech; 2010 Feb 10; 43(3):506-11. PubMed ID: 19879582
    [Abstract] [Full Text] [Related]

  • 9. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping.
    Hobara H, Kato E, Kobayashi Y, Ogata T.
    J Biomech; 2012 Nov 15; 45(16):2750-4. PubMed ID: 23051683
    [Abstract] [Full Text] [Related]

  • 10. Comparison of whole-body vertical stiffness and leg stiffness during single-leg hopping in place in children and adults.
    Beerse M, Wu J.
    J Biomech; 2017 May 03; 56():71-75. PubMed ID: 28318604
    [Abstract] [Full Text] [Related]

  • 11. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW, Bradshaw EJ, Kemp J, Clark RA.
    J Appl Biomech; 2013 Aug 03; 29(4):386-94. PubMed ID: 22923423
    [Abstract] [Full Text] [Related]

  • 12. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks.
    Granata KP, Padua DA, Wilson SE.
    J Electromyogr Kinesiol; 2002 Apr 03; 12(2):127-35. PubMed ID: 11955985
    [Abstract] [Full Text] [Related]

  • 13. Vertical stiffness and center-of-mass movement in children and adults during single-leg hopping.
    Beerse M, Wu J.
    J Biomech; 2016 Oct 03; 49(14):3306-3312. PubMed ID: 27575778
    [Abstract] [Full Text] [Related]

  • 14. Leg Joint Mechanics When Hopping at Different Frequencies.
    Qiao M.
    J Appl Biomech; 2021 Jun 01; 37(3):263-271. PubMed ID: 33975280
    [Abstract] [Full Text] [Related]

  • 15. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG, Yen JT, Chang YH.
    Exp Brain Res; 2009 Jan 01; 192(2):253-64. PubMed ID: 18839158
    [Abstract] [Full Text] [Related]

  • 16. Leg and joint stiffness in human hopping.
    Kuitunen S, Ogiso K, Komi PV.
    Scand J Med Sci Sports; 2011 Dec 01; 21(6):e159-67. PubMed ID: 22126723
    [Abstract] [Full Text] [Related]

  • 17. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S, Mizrahi J, Kimmel E, Verbitsky O, Isakov E.
    J Biomech Eng; 2003 Aug 01; 125(4):507-14. PubMed ID: 12968575
    [Abstract] [Full Text] [Related]

  • 18. Adaptation of lower limb movement patterns when maintaining performance in the presence of muscle fatigue.
    Mudie KL, Gupta A, Green S, Clothier PJ.
    Hum Mov Sci; 2016 Aug 01; 48():28-36. PubMed ID: 27101562
    [Abstract] [Full Text] [Related]

  • 19. Neuromuscular changes for hopping on a range of damped surfaces.
    Moritz CT, Greene SM, Farley CT.
    J Appl Physiol (1985); 2004 May 01; 96(5):1996-2004. PubMed ID: 14688034
    [Abstract] [Full Text] [Related]

  • 20. Regulation of foot and ankle quasi-stiffness during human hopping across a range of frequencies.
    Kessler SE, Lichtwark GA, Welte LKM, Rainbow MJ, Kelly LA.
    J Biomech; 2020 Jul 17; 108():109853. PubMed ID: 32636016
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.