These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 10099571

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Studies on properties of thermostable beta-amylase from Thermoactinomyces sp.V4.
    Zhou BY, Zheng YX.
    Chin J Biotechnol; 1991; 7(2):145-52. PubMed ID: 1839610
    [Abstract] [Full Text] [Related]

  • 24. Encapsulation of β-amylase in water-oil-water enzyme emulsion liquid membrane (EELM) bioreactor for enzymatic conversion of starch to maltose.
    Priyanka BS, Rastogi NK.
    Prep Biochem Biotechnol; 2020; 50(2):172-180. PubMed ID: 31846387
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli.
    Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, Park CS.
    FEMS Microbiol Lett; 2005 Nov 01; 252(1):175-81. PubMed ID: 16198511
    [Abstract] [Full Text] [Related]

  • 27. Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea).
    Das R, Kayastha AM.
    Food Chem; 2019 Mar 15; 276():583-590. PubMed ID: 30409636
    [Abstract] [Full Text] [Related]

  • 28. Starch biosynthesis: further evidence against the primer nonreducing-end mechanism and evidence for the reducing-end two-site insertion mechanism.
    Mukerjea R, Robyt JF.
    Carbohydr Res; 2005 Sep 26; 340(13):2206-11. PubMed ID: 16026770
    [Abstract] [Full Text] [Related]

  • 29. Starch utilization by Bacteroides ovatus isolated from the human large intestine.
    Degnan BA, Macfarlane S, Quigley ME, Macfarlane GT.
    Curr Microbiol; 1997 May 26; 34(5):290-6. PubMed ID: 9099629
    [Abstract] [Full Text] [Related]

  • 30. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.
    Møller MS, Windahl MS, Sim L, Bøjstrup M, Abou Hachem M, Hindsgaul O, Palcic M, Svensson B, Henriksen A.
    J Mol Biol; 2015 Mar 27; 427(6 Pt B):1263-1277. PubMed ID: 25562209
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Mobility of enzymes on insoluble substrates: the beta-amylase-starch gel system.
    Henis YI, Yaron T, Lamed R, Rishpon J, Sahar E, Katchalski-Katzir E.
    Biopolymers; 1988 Jan 27; 27(1):123-38. PubMed ID: 2449255
    [No Abstract] [Full Text] [Related]

  • 34. Unexpected mode of action of sweet potato β-amylase on maltooligomer substrates.
    Fazekas E, Szabó K, Kandra L, Gyémánt G.
    Biochim Biophys Acta; 2013 Oct 27; 1834(10):1976-81. PubMed ID: 23831155
    [Abstract] [Full Text] [Related]

  • 35. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.
    D'Amico S, Sohier JS, Feller G.
    J Mol Biol; 2006 May 19; 358(5):1296-304. PubMed ID: 16580683
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Continuous production of maltooligosaccharides from glucose 1-phosphate by amylase-phosphorylase reactor.
    Nakatani H, Tanaka A, Hiromi K.
    J Appl Biochem; 1983 Dec 19; 5(6):371-4. PubMed ID: 6206049
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.