These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 10181
1. Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. Bode W, Huber R. FEBS Lett; 1976 Oct 01; 68(2):231-6. PubMed ID: 10181 [No Abstract] [Full Text] [Related]
2. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to p-guanidinobenzoate-trypsinogen. Bode W. J Mol Biol; 1979 Feb 05; 127(4):357-74. PubMed ID: 311834 [No Abstract] [Full Text] [Related]
3. Zymogen activation: effect of peptides sequentially related to the bovine beta-trypsin N-terminus on Kazal inhibitor and benzamidine binding to bovine trypsinogen. Ascenzi P, Coletta M, Amiconi G, Bolognesi M, Guarneri M, Menegatti E. J Mol Recognit; 1988 Jun 05; 1(3):130-7. PubMed ID: 3273224 [Abstract] [Full Text] [Related]
4. Hydrogen exchange kinetics of bovine pancreatic trypsin inhibitor beta-sheet protons in trypsin-bovine pancreatic trypsin inhibitor, trypsinogen-bovine pancreatic trypsin inhibitor, and trypsinogen-isoleucylvaline-bovine pancreatic trypsin inhibitor. Brandt P, Woodward C. Biochemistry; 1987 Jun 02; 26(11):3156-67. PubMed ID: 2440473 [Abstract] [Full Text] [Related]
5. Bovine trypsinogen activation. A thermodynamic study. Coletta M, Ascenzi P, Amiconi G, Bolognesi M, Guarneri M, Menegatti E. Biophys Chem; 1990 Aug 31; 37(1-3):355-62. PubMed ID: 2285797 [Abstract] [Full Text] [Related]
6. Mechanisms of zymogen activation. Stroud RM, Kossiakoff AA, Chambers JL. Annu Rev Biophys Bioeng; 1977 Aug 31; 6():177-93. PubMed ID: 17350 [No Abstract] [Full Text] [Related]
7. Structure of bovine trypsinogen at 1.9 A resolution. Kossiakoff AA, Chambers JL, Kay LM, Stroud RM. Biochemistry; 1977 Feb 22; 16(4):654-64. PubMed ID: 556951 [Abstract] [Full Text] [Related]
8. Interaction between squash inhibitors and bovine trypsinogen. Zbyryt T, Otlewski J. Biol Chem Hoppe Seyler; 1991 Apr 22; 372(4):255-62. PubMed ID: 2059335 [Abstract] [Full Text] [Related]
9. Comparison of anionic and cationic trypsinogens: the anionic activation domain is more flexible in solution and differs in its mode of BPTI binding in the crystal structure. Pasternak A, Ringe D, Hedstrom L. Protein Sci; 1999 Jan 22; 8(1):253-8. PubMed ID: 10210204 [Abstract] [Full Text] [Related]
10. [Activation, activity and inhibition of bovine trypsin]. Bode W. Naturwissenschaften; 1979 May 22; 66(5):251-8. PubMed ID: 381946 [Abstract] [Full Text] [Related]
11. Disulfide bond-modified trypsinogen. Role of disulfide 179-203 on the specificity characteristics of bovine trypsin toward synthetic substrates. Knights RJ, Light A. J Biol Chem; 1976 Jan 10; 251(1):222-8. PubMed ID: 942666 [Abstract] [Full Text] [Related]
13. Trypsinogen-trypsin transition: a molecular dynamics study of induced conformational change in the activation domain. Brünger AT, Huber R, Karplus M. Biochemistry; 1987 Aug 11; 26(16):5153-62. PubMed ID: 3663651 [Abstract] [Full Text] [Related]
15. Conformational study of proteins by SAXS and EDXD: the case of trypsin and trypsinogen. Caracciolo G, Amiconi G, Bencivenni L, Boumis G, Caminiti R, Finocchiaro E, Maras B, Paolinelli C, Congiu Castellano A. Eur Biophys J; 2001 Jul 11; 30(3):163-70. PubMed ID: 11508835 [Abstract] [Full Text] [Related]
19. Catalysis by serine proteases and their zymogens. A study of acyl intermediates by circular dichroism. Kerr MA, Walsh KA, Neurath H. Biochemistry; 1975 Nov 18; 14(23):5088-94. PubMed ID: 1238107 [Abstract] [Full Text] [Related]