These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 10196527

  • 1. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII.
    Margrie TW, Rostas JA, Sah P.
    Nat Neurosci; 1998 Sep; 1(5):378-83. PubMed ID: 10196527
    [Abstract] [Full Text] [Related]

  • 2. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S.
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [Abstract] [Full Text] [Related]

  • 3. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus.
    Lanté F, de Jésus Ferreira MC, Guiramand J, Récasens M, Vignes M.
    Hippocampus; 2006 Jul; 16(4):345-60. PubMed ID: 16302229
    [Abstract] [Full Text] [Related]

  • 4. Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus.
    Lushnikova I, Skibo G, Muller D, Nikonenko I.
    Hippocampus; 2009 Aug; 19(8):753-62. PubMed ID: 19156853
    [Abstract] [Full Text] [Related]

  • 5. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area.
    Miyamoto E, Fukunaga K.
    Neurosci Res; 1996 Jan; 24(2):117-22. PubMed ID: 8929917
    [Abstract] [Full Text] [Related]

  • 6. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY.
    Cell; 2005 Oct 07; 123(1):105-18. PubMed ID: 16213216
    [Abstract] [Full Text] [Related]

  • 7. The contribution of calcium/calmodulin-dependent protein-kinase II (CaMKII) to short-term plasticity at the neuromuscular junction.
    Mukhamedyarov MA, Kochunova JO, Yusupova ER, Haidarov BA, Zefirov AL, Palotás A.
    Brain Res Bull; 2010 Apr 05; 81(6):613-6. PubMed ID: 20043980
    [Abstract] [Full Text] [Related]

  • 8. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J, Schulman H, Cline H.
    Nat Rev Neurosci; 2002 Mar 05; 3(3):175-90. PubMed ID: 11994750
    [Abstract] [Full Text] [Related]

  • 9. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD, Iyengar R, Landau EM.
    Biol Psychiatry; 2005 Jan 15; 57(2):113-9. PubMed ID: 15652868
    [Abstract] [Full Text] [Related]

  • 10. Repetitive induction of late-phase LTP produces long-lasting synaptic enhancement accompanied by synaptogenesis in cultured hippocampal slices.
    Tominaga-Yoshino K, Urakubo T, Okada M, Matsuda H, Ogura A.
    Hippocampus; 2008 Jan 15; 18(3):281-93. PubMed ID: 18058822
    [Abstract] [Full Text] [Related]

  • 11. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission.
    Patenaude C, Chapman CA, Bertrand S, Congar P, Lacaille JC.
    J Physiol; 2003 Nov 15; 553(Pt 1):155-67. PubMed ID: 12963794
    [Abstract] [Full Text] [Related]

  • 12. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB, Khorasani H, Persson A, Huang KP, Huang FL, O'Dell TJ.
    J Neurosci Res; 2002 Nov 01; 70(3):298-308. PubMed ID: 12391589
    [Abstract] [Full Text] [Related]

  • 13. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D, Watson JB, Xie CW.
    J Neurophysiol; 2004 Nov 01; 92(5):2853-8. PubMed ID: 15212428
    [Abstract] [Full Text] [Related]

  • 14. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M.
    Neuroscience; 2005 Nov 01; 136(2):397-403. PubMed ID: 16182449
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation.
    Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE.
    Neuron; 2004 Aug 19; 43(4):563-74. PubMed ID: 15312654
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech.
    Grey KB, Burrell BD.
    J Neurophysiol; 2008 May 19; 99(5):2719-24. PubMed ID: 18337371
    [Abstract] [Full Text] [Related]

  • 20. Developmental stage-dependent modulation of synapses by postsynaptic expression of activated calcium/calmodulin-dependent protein kinase II.
    Morimoto-Tanifuji T, Kazama H, Nose A.
    Neuroscience; 2004 May 19; 128(4):797-806. PubMed ID: 15464287
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.