These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 10198414

  • 1. Localization of rat CLC-K2 chloride channel mRNA in the kidney.
    Yoshikawa M, Uchida S, Yamauchi A, Miyai A, Tanaka Y, Sasaki S, Marumo F.
    Am J Physiol; 1999 Apr; 276(4):F552-8. PubMed ID: 10198414
    [Abstract] [Full Text] [Related]

  • 2. Nephron specific regulation of chloride channel CLC-K2 mRNA in the rat.
    Vitzthum H, Castrop H, Meier-Meitinger M, Riegger GA, Kurtz A, Krämer BK, Wolf K.
    Kidney Int; 2002 Feb; 61(2):547-54. PubMed ID: 11849395
    [Abstract] [Full Text] [Related]

  • 3. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney.
    Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F.
    J Am Soc Nephrol; 2001 Jul; 12(7):1327-1334. PubMed ID: 11423561
    [Abstract] [Full Text] [Related]

  • 4. Cloning, tissue distribution, and intrarenal localization of ClC chloride channels in human kidney.
    Takeuchi Y, Uchida S, Marumo F, Sasaki S.
    Kidney Int; 1995 Nov; 48(5):1497-503. PubMed ID: 8544406
    [Abstract] [Full Text] [Related]

  • 5. Parallel down-regulation of chloride channel CLC-K1 and barttin mRNA in the thin ascending limb of the rat nephron by furosemide.
    Wolf K, Meier-Meitinger M, Bergler T, Castrop H, Vitzthum H, Riegger GA, Kurtz A, Krämer BK.
    Pflugers Arch; 2003 Sep; 446(6):665-71. PubMed ID: 12759757
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments.
    Lee WS, Hebert SC.
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1124-31. PubMed ID: 7611453
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. In vivo role of CLC chloride channels in the kidney.
    Uchida S.
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F802-8. PubMed ID: 11053039
    [Abstract] [Full Text] [Related]

  • 11. Tamm-Horsfall glycoprotein in streptozotocin diabetic rats: a study of kidney in situ hybridization, immunohistochemistry, and urinary excretion.
    Rasch R, Torffvit O, Bachmann S, Jensen PK, Jacobsen NO.
    Diabetologia; 1995 May; 38(5):525-35. PubMed ID: 7489834
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Localization and induction by dehydration of ClC-K chloride channels in the rat kidney.
    Vandewalle A, Cluzeaud F, Bens M, Kieferle S, Steinmeyer K, Jentsch TJ.
    Am J Physiol; 1997 May; 272(5 Pt 2):F678-88. PubMed ID: 9176380
    [Abstract] [Full Text] [Related]

  • 20. Intrarenal mRNA expression of the rat MDCK-type chloride channel.
    Abe T, Takeuchi K, Takahashi N, Taniyama Y, Tsutsumi E, Abe K.
    Nephron; 1996 May; 73(1):23-6. PubMed ID: 8742952
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.