These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 10198960
1. [Optimization of a method of solid-phase immunoenzyme analysis for determination of chloramphenicol in milk]. Kolosova AIu, Samsonova ZhV, Egorov AM, Shevaleva SA, Orlova NG, Kiseleva TV, Khotimchenko SA, Tutel'ian VA. Vopr Pitan; 1999; 68(1):23-7. PubMed ID: 10198960 [Abstract] [Full Text] [Related]
2. [Solid-phase immunoenzyme analysis of chloramphenicol in human blood serum]. Kolosova AIu, Samsonova ZhV, Blintsov AN, Egorov AM. Vopr Med Khim; 1998; 44(2):194-202. PubMed ID: 9634723 [Abstract] [Full Text] [Related]
3. Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system. Wang L, Zhang Y, Gao X, Duan Z, Wang S. J Agric Food Chem; 2010 Mar 24; 58(6):3265-70. PubMed ID: 20192212 [Abstract] [Full Text] [Related]
4. Analysis and monitoring of chloramphenicol residues in food of animal origin in Slovenia from 1991 to 2000. Cerkvenik V. Food Addit Contam; 2002 Apr 24; 19(4):357-67. PubMed ID: 11962693 [Abstract] [Full Text] [Related]
5. Chloramphenicol residues in chicken liver, kidney and muscle: a comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC. Tajik H, Malekinejad H, Razavi-Rouhani SM, Pajouhi MR, Mahmoudi R, Haghnazari A. Food Chem Toxicol; 2010 Apr 24; 48(8-9):2464-8. PubMed ID: 20600543 [Abstract] [Full Text] [Related]
6. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. Shi X, Wu A, Zheng S, Li R, Zhang D. J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May 01; 850(1-2):24-30. PubMed ID: 17126085 [Abstract] [Full Text] [Related]
7. Cephalexin residue detection in milk and beef by ELISA and colloidal gold based one-step strip assay. Chen L, Wang Z, Ferreri M, Su J, Han B. J Agric Food Chem; 2009 Jun 10; 57(11):4674-9. PubMed ID: 19441838 [Abstract] [Full Text] [Related]
8. Depletion of chloramphenicol in trout after a hypothetic therapeutic treatment. Biancotto G, Contiero L, Benetti C, Calligaris M, Tibaldi E, Cerni L, Francese M. Anal Chim Acta; 2009 Apr 01; 637(1-2):173-7. PubMed ID: 19286026 [Abstract] [Full Text] [Related]
9. Sensitive streptavidin-biotin enzyme-linked immunosorbent assay for rapid screening of chloramphenicol residues in swine muscle tissue. van de Water C, Haagsma N. J Assoc Off Anal Chem; 1990 Apr 01; 73(4):534-40. PubMed ID: 2211475 [Abstract] [Full Text] [Related]
10. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol. Sai N, Chen Y, Liu N, Yu G, Su P, Feng Y, Zhou Z, Liu X, Zhou H, Gao Z, Ning BA. Talanta; 2010 Sep 15; 82(4):1113-21. PubMed ID: 20801306 [Abstract] [Full Text] [Related]
11. Development of a liquid chromatography/electrospray tandem mass spectrometry method for confirmation of chloramphenicol residues in milk after alfa-1-acid glycoprotein affinity chromatography. Gallo P, Nasi A, Vinci F, Guadagnuolo G, Brambilla G, Fiori M, Serpe L. Rapid Commun Mass Spectrom; 2005 Sep 15; 19(4):574-9. PubMed ID: 15674795 [Abstract] [Full Text] [Related]
12. Development of a competitive indirect ELISA for the determination of lincomycin in milk, eggs, and honey. Burkin MA, Galvidis IA. J Agric Food Chem; 2010 Sep 22; 58(18):9893-8. PubMed ID: 20718433 [Abstract] [Full Text] [Related]
13. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Byzova NA, Zvereva EA, Zherdev AV, Eremin SA, Dzantiev BB. Talanta; 2010 May 15; 81(3):843-8. PubMed ID: 20298863 [Abstract] [Full Text] [Related]
14. Chemiluminescence immunoassay for chloramphenicol. Lin S, Han SQ, Liu YB, Xu WG, Guan GY. Anal Bioanal Chem; 2005 Jul 15; 382(5):1250-5. PubMed ID: 15977032 [Abstract] [Full Text] [Related]
15. Chemiluminescence enzyme immunoassay (CLEIA) for the determination of chloramphenicol residues in aquatic tissues. Chuanlai X, Cifang P, Kai H, Zhengyu J, Wukang W. Luminescence; 2006 Jul 15; 21(2):126-8. PubMed ID: 16421961 [Abstract] [Full Text] [Related]
16. Determination of hexoestrol residues in animal tissues based on enzyme-linked immunosorbent assay and comparison with liquid chromatography-tandem mass spectrometry. Xu C, Peng C, Liu L, Wang L, Jin Z, Chu X. J Pharm Biomed Anal; 2006 Jun 07; 41(3):1029-36. PubMed ID: 16497468 [Abstract] [Full Text] [Related]
17. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples. Guo L, Song S, Liu L, Peng J, Kuang H, Xu C. Biomed Chromatogr; 2015 Sep 07; 29(9):1432-9. PubMed ID: 25675893 [Abstract] [Full Text] [Related]
18. Development of in-house ELISA for detection of chloramphenicol in bovine milk with subsequent confirmatory analysis by LC-MS/MS. Chughtai MI, Maqbool U, Iqbal M, Shah MS, Fodey T. J Environ Sci Health B; 2017 Dec 02; 52(12):871-879. PubMed ID: 28922623 [Abstract] [Full Text] [Related]
19. Rapid determination of tetracycline in milk by FT-MIR and FT-NIR spectroscopy. Sivakesava S, Irudayaraj J. J Dairy Sci; 2002 Mar 02; 85(3):487-93. PubMed ID: 11949850 [Abstract] [Full Text] [Related]
20. Determination of chloramphenicol residues in milk, eggs, and tissues by liquid chromatography/mass spectrometry. Penney L, Smith A, Coates B, Wijewickreme A. J AOAC Int; 2005 Mar 02; 88(2):645-53. PubMed ID: 15859093 [Abstract] [Full Text] [Related] Page: [Next] [New Search]