These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
96 related items for PubMed ID: 10200170
1. Explanation of pre-steady-state kinetics and decreased burst amplitude of HIV-1 reverse transcriptase at sites of modified DNA bases with an additional, nonproductive enzyme-DNA-nucleotide complex. Furge LL, Guengerich FP. Biochemistry; 1999 Apr 13; 38(15):4818-25. PubMed ID: 10200170 [Abstract] [Full Text] [Related]
7. Attenuation of DNA replication by HIV-1 reverse transcriptase near the central termination sequence. Ignatov ME, Berdis AJ, Le Grice SF, Barkley MD. Biochemistry; 2005 Apr 12; 44(14):5346-56. PubMed ID: 15807528 [Abstract] [Full Text] [Related]
8. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-. Lowe LG, Guengerich FP. Biochemistry; 1996 Jul 30; 35(30):9840-9. PubMed ID: 8703958 [Abstract] [Full Text] [Related]
9. Effect of RNA secondary structure on the kinetics of DNA synthesis catalyzed by HIV-1 reverse transcriptase. Suo Z, Johnson KA. Biochemistry; 1997 Oct 14; 36(41):12459-67. PubMed ID: 9376350 [Abstract] [Full Text] [Related]
10. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain. Najmudin S, Coté ML, Sun D, Yohannan S, Montano SP, Gu J, Georgiadis MM. J Mol Biol; 2000 Feb 18; 296(2):613-32. PubMed ID: 10669612 [Abstract] [Full Text] [Related]
13. A role for dNTP binding of human immunodeficiency virus type 1 reverse transcriptase in viral mutagenesis. Weiss KK, Chen R, Skasko M, Reynolds HM, Lee K, Bambara RA, Mansky LM, Kim B. Biochemistry; 2004 Apr 20; 43(15):4490-500. PubMed ID: 15078095 [Abstract] [Full Text] [Related]
16. Nucleotide-induced stable complex formation by HIV-1 reverse transcriptase. Tong W, Lu CD, Sharma SK, Matsuura S, So AG, Scott WA. Biochemistry; 1997 May 13; 36(19):5749-57. PubMed ID: 9153415 [Abstract] [Full Text] [Related]
17. Mechanistic insights into the role of Val75 of HIV-1 reverse transcriptase in misinsertion and mispair extension fidelity of DNA synthesis. Matamoros T, Kim B, Menéndez-Arias L. J Mol Biol; 2008 Feb 01; 375(5):1234-48. PubMed ID: 18155043 [Abstract] [Full Text] [Related]
18. Mechanistic studies examining the efficiency and fidelity of DNA synthesis by the 3TC-resistant mutant (184V) of HIV-1 reverse transcriptase. Feng JY, Anderson KS. Biochemistry; 1999 Jul 20; 38(29):9440-8. PubMed ID: 10413520 [Abstract] [Full Text] [Related]
19. Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides. Marx A, Spichty M, Amacker M, Schwitter U, Hübscher U, Bickle TA, Maga G, Giese B. Chem Biol; 1999 Feb 20; 6(2):111-6. PubMed ID: 10021419 [Abstract] [Full Text] [Related]
20. Analysis of the polymerization kinetics of homodimeric EIAV p51/51 reverse transcriptase implies the formation of a polymerase active site identical to heterodimeric EIAV p66/51 reverse transcriptase. Souquet M, Restle T, Krebs R, Le Grice SF, Goody RS, Wöhrl BM. Biochemistry; 1998 Sep 01; 37(35):12144-52. PubMed ID: 9724526 [Abstract] [Full Text] [Related] Page: [Next] [New Search]