These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
253 related items for PubMed ID: 10207060
1. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Iraqui I, Vissers S, André B, Urrestarazu A. Mol Cell Biol; 1999 May; 19(5):3360-71. PubMed ID: 10207060 [Abstract] [Full Text] [Related]
2. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Iraqui I, Vissers S, Cartiaux M, Urrestarazu A. Mol Gen Genet; 1998 Jan; 257(2):238-48. PubMed ID: 9491083 [Abstract] [Full Text] [Related]
3. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Kim S, Lee K, Bae SJ, Hahn JS. Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467 [Abstract] [Full Text] [Related]
4. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae. Lee K, Hahn JS. Mol Microbiol; 2013 Jun; 88(6):1120-34. PubMed ID: 23651256 [Abstract] [Full Text] [Related]
5. Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae. Lee K, Sung C, Kim BG, Hahn JS. Biochem Biophys Res Commun; 2013 Aug 16; 438(1):43-7. PubMed ID: 23860270 [Abstract] [Full Text] [Related]
6. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Iraqui I, Vissers S, Bernard F, de Craene JO, Boles E, Urrestarazu A, André B. Mol Cell Biol; 1999 Feb 16; 19(2):989-1001. PubMed ID: 9891035 [Abstract] [Full Text] [Related]
7. Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. De Boer M, Bebelman JP, Gonçalves PM, Maat J, Van Heerikhuizen H, Planta RJ. Mol Microbiol; 1998 Nov 16; 30(3):603-13. PubMed ID: 9822825 [Abstract] [Full Text] [Related]
8. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Brunke S, Seider K, Richter ME, Bremer-Streck S, Ramachandra S, Kiehntopf M, Brock M, Hube B. Eukaryot Cell; 2014 Jun 16; 13(6):758-65. PubMed ID: 24728193 [Abstract] [Full Text] [Related]
10. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Soussi-Boudekou S, Vissers S, Urrestarazu A, Jauniaux JC, André B. Mol Microbiol; 1997 Mar 16; 23(6):1157-68. PubMed ID: 9106207 [Abstract] [Full Text] [Related]
11. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. Wang Z, Bai X, Guo X, He X. J Ind Microbiol Biotechnol; 2017 Jan 16; 44(1):129-139. PubMed ID: 27770224 [Abstract] [Full Text] [Related]
12. Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Urrestarazu A, Vissers S, Iraqui I, Grenson M. Mol Gen Genet; 1998 Jan 16; 257(2):230-7. PubMed ID: 9491082 [Abstract] [Full Text] [Related]
13. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. Chen X, Wang Z, Guo X, Liu S, He X. J Biotechnol; 2017 Jan 20; 242():83-91. PubMed ID: 27908775 [Abstract] [Full Text] [Related]
14. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae. André B, Talibi D, Soussi Boudekou S, Hein C, Vissers S, Coornaert D. Nucleic Acids Res; 1995 Feb 25; 23(4):558-64. PubMed ID: 7899075 [Abstract] [Full Text] [Related]
15. A family of ammonium transporters in Saccharomyces cerevisiae. Marini AM, Soussi-Boudekou S, Vissers S, Andre B. Mol Cell Biol; 1997 Aug 25; 17(8):4282-93. PubMed ID: 9234685 [Abstract] [Full Text] [Related]
16. Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae. Helmstaedt K, Strittmatter A, Lipscomb WN, Braus GH. Proc Natl Acad Sci U S A; 2005 Jul 12; 102(28):9784-9. PubMed ID: 15987779 [Abstract] [Full Text] [Related]
17. Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae. Yin S, Lang T, Xiao X, Liu L, Sun B, Wang C. FEMS Microbiol Lett; 2015 Mar 12; 362(5):. PubMed ID: 25743068 [Abstract] [Full Text] [Related]
18. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae. Leavitt JM, Tong A, Tong J, Pattie J, Alper HS. Biotechnol J; 2016 Jul 12; 11(7):866-76. PubMed ID: 27152757 [Abstract] [Full Text] [Related]
19. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA. J Bacteriol; 1996 Apr 12; 178(7):2025-9. PubMed ID: 8606179 [Abstract] [Full Text] [Related]
20. Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum. Trip H, Evers ME, Konings WN, Driessen AJ. Biochim Biophys Acta; 2002 Sep 20; 1565(1):73-80. PubMed ID: 12225854 [Abstract] [Full Text] [Related] Page: [Next] [New Search]