These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 10209263

  • 21. Multiple DNA elements for sterol regulatory element-binding protein and NF-Y are responsible for sterol-regulated transcription of the genes for human 3-hydroxy-3-methylglutaryl coenzyme A synthase and squalene synthase.
    Inoue J, Sato R, Maeda M.
    J Biochem; 1998 Jun; 123(6):1191-8. PubMed ID: 9604010
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S.
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Recovery of E,E-farnesol from cultures of yeast erg9 mutants: extraction with polymeric beads and purification by normal-phase chromatography.
    Song L.
    Biotechnol Prog; 2009 Mar; 25(4):1111-4. PubMed ID: 19569196
    [Abstract] [Full Text] [Related]

  • 27. Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae.
    Jensen-Pergakes K, Guo Z, Giattina M, Sturley SL, Bard M.
    J Bacteriol; 2001 Sep; 183(17):4950-7. PubMed ID: 11489845
    [Abstract] [Full Text] [Related]

  • 28. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J, Park SH, Kim S, Kim SW, Hahn JS.
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [Abstract] [Full Text] [Related]

  • 29. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame.
    Eiznhamer DA, Ashburner BP, Jackson JC, Gardenour KR, Lopes JM.
    Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853
    [Abstract] [Full Text] [Related]

  • 30. The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae.
    Dewhurst-Maridor G, Abegg D, David FPA, Rougemont J, Scott CC, Adibekian A, Riezman H.
    Mol Biol Cell; 2017 Oct 01; 28(20):2637-2649. PubMed ID: 28768829
    [Abstract] [Full Text] [Related]

  • 31. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation.
    Robinson GW, Tsay YH, Kienzle BK, Smith-Monroy CA, Bishop RW.
    Mol Cell Biol; 1993 May 01; 13(5):2706-17. PubMed ID: 8474436
    [Abstract] [Full Text] [Related]

  • 32. Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae.
    Smith SJ, Crowley JH, Parks LW.
    Mol Cell Biol; 1996 Oct 01; 16(10):5427-32. PubMed ID: 8816455
    [Abstract] [Full Text] [Related]

  • 33. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE.
    Metab Eng; 2017 Jan 01; 39():209-219. PubMed ID: 27939849
    [Abstract] [Full Text] [Related]

  • 34. Detection of farnesyl diphosphate accumulation in yeast ERG9 mutants.
    Song L.
    Anal Biochem; 2003 Jun 15; 317(2):180-5. PubMed ID: 12758256
    [Abstract] [Full Text] [Related]

  • 35. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode.
    Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V.
    Metab Eng; 2012 Mar 15; 14(2):91-103. PubMed ID: 22330799
    [Abstract] [Full Text] [Related]

  • 36. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG.
    World J Microbiol Biotechnol; 2018 Mar 28; 34(4):55. PubMed ID: 29594560
    [Abstract] [Full Text] [Related]

  • 37. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1.
    Rosenkrantz M, Kell CS, Pennell EA, Devenish LJ.
    Mol Microbiol; 1994 Jul 28; 13(1):119-31. PubMed ID: 7984086
    [Abstract] [Full Text] [Related]

  • 38. INO2, a regulatory gene in yeast phospholipid biosynthesis, affects nuclear segregation and bud pattern formation.
    Hammond CL, Romano P, Roe S, Tontonoz P.
    Cell Mol Biol Res; 1993 Jul 28; 39(6):561-77. PubMed ID: 8012448
    [Abstract] [Full Text] [Related]

  • 39. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control.
    Watt R, Piper PW.
    Mol Gen Genet; 1997 Jan 27; 253(4):439-47. PubMed ID: 9037103
    [Abstract] [Full Text] [Related]

  • 40. Structure and regulation of mammalian squalene synthase.
    Tansey TR, Shechter I.
    Biochim Biophys Acta; 2000 Dec 15; 1529(1-3):49-62. PubMed ID: 11111077
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.